Simple steps are all you need: Frank-Wolfe
and generalized self-concordant functions
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Abstract @Backtracking AFW (B-AFW): We show that Convergence rate of M-FW
AFW [5] with the line search of [4] achieves

Generalized self-concordance is a key property improved rates when X is polyhedral. Let X be a compact convex set and f be a GSC function, then M-FW satisfies:
present in many learning problems. We estab- ~ 4T, +1) .
lish the convergence rate of a simple Frank- Monotonous/Backtracking FW J&) = J(X) 5 r+1 max{/(xo) - /(x),C}
Wolfe variant that uses a y;, = 2/(¢t + 2) step for t > T, where C and T, depends on the diameter of X, v, M, and the largest eigenvalue of the
size, obtaining a O(1/t) convergence rate in pri- Focusing on the first two contributions, the al- Hessian for points y € X with f(y) < f(xg). Otherwise, f(x;) < f(xg) fort < T,,.
mal and Frank-Wolfe gap. This avoids the use gorithms proposed are:

Proof sketch: after an initial number of iterations independent of €, the decreasing 2/(2 + 1)

O,f second-order information or the need to es- Algorithm 1 M/B-FW step size ensures both that the iterates remain inside dom( f) and that we can use a smoothness-
timate local smoothness parameters. We also q . . . .
, , , . fort=0to ... do like inequality from generalized self-concordance. The convergence rate follows by induction
show improved rates when the feasible region . 1 : . . . ..
. o] vhedral 2 V; «— argmin, v (Vf(X;), V) by considering two different scenarios, one in which the step size is small enough to use the
15 UIIIOTILy CoRvex Of polyhedial Option 1: M-FW aforementioned inequality to ensure primal progress, which therefore means that we do not go
Motivation 3 X1 < X +2/(t+2) (v, — X;) to Line 5 of Algorithm 1, and another case in which the step size is not small enough, but which
4 if X;41 ¢ dom(f) or f(X;41) > f(X;) then trivially allows us to prove the desired bound.
We consider the problem: 5 X1 — X
min f(x), (1) Option 2: B-FW Convergence rate of B-FW
6: Yt Lt — BathraCk(f, Xs, Vi — Xy, Ll‘—].a 1)

where f is (M, v) generalized self-concordant

(GSC) and X is a compact convex set. We solve T X < X4y (V- X)) ]cﬁ:n];ezes :tca}lslg }f::n:tlftn( XImedt)Snil (;(;I)nlzﬁ(e:; Proof sketch: For all the cases considered, the

Problem (1) armed with: where Backtrack(f,X,,V,—X,, L,_1,1) is the B-FW converges in primal/Fra nk-Wolf:e aap per-iterati.on progress bound usedostems from the

o Zeroth/First Order Oracle (Z/FOO) backtracking line search of [4], which automat- with complexity O(log1/g). Otherwise, backtracking line sea1jch. For the linear ,

» Linear Minimization Oracle (LMO) ically estimates the local smoothness parameter, assume that X is a («, ¢)-uniformly convex set, convergence rates, this Progress .b.OUHd 1S

« Domain Oracle (DO) with the modification that we also check if the then the algorithm converges with the complemented by a scaling COndlilOTl th?t r.elates
' | point we are moving towards is inside dom( f). following complexities: (Vf .(?}ilt), Xt*_ V) to (V f (;Xr), X; — X*), which is due

Focus on Frank-Wolfe (FW) [1], a.k.a. Condi- Backtracking AFW Assumptions Rate to either x* € Int (X Ndom( f)) or

tional Gradient (CG) [2], algorithms. Typically, min ||V f(x)|| > 0 and the set being

. I in ||V >0,qg=2 O(log1 XeX . ..
in order to solve Problem (1), existing algf)- Given a polytope X, one can use the AFW algo- 2161)12 J () 1 (( 08 2/ 2 (k, 2)-uniformly convex. For the remaining cases,
rithms utilize second-order oracles and obtain = 51 with the modified version of the back. min [[Vf(x)[| >0,¢>2 O £71972)/9) e use the properties derived from the uniform

O(l/t) rates in primal gdp [3] No Straight lines in dom(f) O (8_(q_1)/Q) COIlveXity of the feasible l‘egion (See [6])

”~

tracking line search of [4] mentioned in the
previous section to obtain the following conver-

Can we match existing rates in the literature
without second-order information? Yes!

gEICE in primal and Frank-Wolfe gap. Computational Results
Our contributions are:
_ . ° . 10U ;\
that achieves O(1/t) convergence in primal 102
and FW gap. Let X be a polytope, and f be a GSC function, e
®Backtracking FW (B-FW): We show that FW then B-AFW requires O(log1/¢) iterations to
. . . . . o o . o '.*. GSC-FW 10_6'
with the line search of [4] achieves improved achieve an e-optimal solution in primal gap h oo )
rates when X is uniformly convex. or Frank-Wolfe gap. (O (L N o 10! 103 10° 102 ot 10t 10! 103
Iteration Time [s] Iteration Time [s]
Figure 1: Performance w.r.t. iteration count/time: Algorithm comparison in terms of Frank-Wolfe gap (denoted by g(x;)) for a
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