
Simple steps are all you need: Frank-Wolfe
and generalized self-concordant functions

Alejandro Carderera1, Mathieu Besançon2,
Sebastian Pokutta2,3

1Georgia Institute of Technology, 2Zuse Institute Berlin,
3Technische Universität Berlin

1 / 29

Problem Setting

Minimization of a generalized-self concordant (GSC) function over
a compact convex X

min
x∈X

𝑓 (x)

Informally, GSC functions are those whose third derivative is
bounded by their second derivative

These functions appear in:

1. Interior-point formulations with barrier functions

2. Marginal inference with concave maximization

3. Logistic regression for classification

2 / 29

Problem Setting

Minimization of a generalized-self concordant (GSC) function over
a compact convex X

min
x∈X

𝑓 (x)

Informally, GSC functions are those whose third derivative is
bounded by their second derivative

These functions appear in:

1. Interior-point formulations with barrier functions

2. Marginal inference with concave maximization

3. Logistic regression for classification

3 / 29

Focus on X for which projections are hard
For example, if X = P ∩ C, where P is a polytope, and C is a
convex set for which we can easily build a barrier function ΦC (x).
Projecting onto X can be expensive!

-1.5

0.0

1.5
3.0

4.5

4.
5

6.07.5

x∗
P

C

Figure: 𝑓 (𝑥)

2.0

4.0

6.0

8.0

x∗

P

C

Figure:
𝑓 (𝑥) + 𝜇′ΦC (x)

-0.5

0.0

0.5

1.0

2.0

4.06.0
8.0

x∗
P

C

Figure:
𝑓 (𝑥) + 𝜇ΦC (x)

A benefit from this approach is that the solution is expressed as a
sparse convex combination of the vertices of P, this might lead to
better interpretability, or generalization capabilities

4 / 29

Focus on X for which projections are hard
For example, if X = P ∩ C, where P is a polytope, and C is a
convex set for which we can easily build a barrier function ΦC (x).
Projecting onto X can be expensive!

-1.5

0.0

1.5
3.0

4.5

4.
5

6.07.5

x∗
P

C

Figure: 𝑓 (𝑥)

2.0

4.0

6.0

8.0

x∗

P

C

Figure:
𝑓 (𝑥) + 𝜇′ΦC (x)

-0.5

0.0

0.5

1.0

2.0

4.06.0
8.0

x∗
P

C

Figure:
𝑓 (𝑥) + 𝜇ΦC (x)

A benefit from this approach is that the solution is expressed as a
sparse convex combination of the vertices of P, this might lead to
better interpretability, or generalization capabilities

5 / 29

Focus on X for which projections are hard
For example, if X = P ∩ C, where P is a polytope, and C is a
convex set for which we can easily build a barrier function ΦC (x).
Projecting onto X can be expensive!

-1.5

0.0

1.5
3.0

4.5

4.
5

6.07.5

x∗
P

C

Figure: 𝑓 (𝑥)

2.0

4.0

6.0

8.0

x∗

P

C

Figure:
𝑓 (𝑥) + 𝜇′ΦC (x)

-0.5

0.0

0.5

1.0

2.0

4.06.0
8.0

x∗
P

C

Figure:
𝑓 (𝑥) + 𝜇ΦC (x)

A benefit from this approach is that the solution is expressed as a
sparse convex combination of the vertices of P, this might lead to
better interpretability, or generalization capabilities

6 / 29

Focus on X for which projections are hard
For example, if X = P ∩ C, where P is a polytope, and C is a
convex set for which we can easily build a barrier function ΦC (x).
Projecting onto X can be expensive!

-1.5

0.0

1.5
3.0

4.5

4.
5

6.07.5

x∗
P

C

Figure: 𝑓 (𝑥)

2.0

4.0

6.0

8.0

x∗

P

C

Figure:
𝑓 (𝑥) + 𝜇′ΦC (x)

-0.5

0.0

0.5

1.0

2.0

4.06.0
8.0

x∗
P

C

Figure:
𝑓 (𝑥) + 𝜇ΦC (x)

A benefit from this approach is that the solution is expressed as a
sparse convex combination of the vertices of P, this might lead to
better interpretability, or generalization capabilities

7 / 29

Main ingredients

Focus on the Frank-Wolfe (FW) algorithm [FW56; Pol74] using:

Domain Oracle (DO). Given x ∈ ℝ𝑛, return:

true if x ∈ dom(𝑓), false otherwise

Zeroth/First-Order Oracle (Z/FOO). Given x ∈ dom(𝑓) return:

∇ 𝑓 (x) ∈ ℝ𝑛 and 𝑓 (x) ∈ ℝ

Linear Minimization Oracle (LMO). Given v ∈ ℝ𝑛, return:

argmin
x∈X

⟨v, x⟩

Note that we do not assume access to a second-order oracle or a
backtracking line search!

8 / 29

Main ingredients

Focus on the Frank-Wolfe (FW) algorithm [FW56; Pol74] using:
Domain Oracle (DO). Given x ∈ ℝ𝑛, return:

true if x ∈ dom(𝑓), false otherwise

Zeroth/First-Order Oracle (Z/FOO). Given x ∈ dom(𝑓) return:

∇ 𝑓 (x) ∈ ℝ𝑛 and 𝑓 (x) ∈ ℝ

Linear Minimization Oracle (LMO). Given v ∈ ℝ𝑛, return:

argmin
x∈X

⟨v, x⟩

Note that we do not assume access to a second-order oracle or a
backtracking line search!

9 / 29

Main ingredients

Focus on the Frank-Wolfe (FW) algorithm [FW56; Pol74] using:
Domain Oracle (DO). Given x ∈ ℝ𝑛, return:

true if x ∈ dom(𝑓), false otherwise

Zeroth/First-Order Oracle (Z/FOO). Given x ∈ dom(𝑓) return:

∇ 𝑓 (x) ∈ ℝ𝑛 and 𝑓 (x) ∈ ℝ

Linear Minimization Oracle (LMO). Given v ∈ ℝ𝑛, return:

argmin
x∈X

⟨v, x⟩

Note that we do not assume access to a second-order oracle or a
backtracking line search!

10 / 29

Question: Why is second-order information (or the backtracking
line search of [Ped+20]) used?

In order for the iterates to satisfy that x𝑡 ∈ dom(𝑓), and to use a
smoothness-like inequality, obtaining algorithms with O (1/𝑡)

convergence rates in primal gap [Dvu+20]

Question: Can we achieve the same rates without these two
ingredients?

Yes! We can substitute second-order information for a domain
oracle, and a backtracking line search for a 2/(2 + 𝑡) step size

11 / 29

Question: Why is second-order information (or the backtracking
line search of [Ped+20]) used?

In order for the iterates to satisfy that x𝑡 ∈ dom(𝑓), and to use a
smoothness-like inequality, obtaining algorithms with O (1/𝑡)

convergence rates in primal gap [Dvu+20]

Question: Can we achieve the same rates without these two
ingredients?

Yes! We can substitute second-order information for a domain
oracle, and a backtracking line search for a 2/(2 + 𝑡) step size

12 / 29

Contributions

Our contributions can be summarized as follows:

1. A simple parameter-free FW algorithm with a 2/(2 + 𝑡) step
size and a convergence rate of O (1/𝑡) in both primal gap and
Frank-Wolfe gap, without using second-order information or a
backtracking line search

2. Improved convergence rates when the optimum is contained in
the interior of X ∩ dom(𝑓), or when the set X is uniformly or
strongly convex, using the backtracking line search of
[Ped+20]

3. Numerical experiments that compare the performance of the
algorithms on generalized self-concordant objectives to those
in the existing literature

13 / 29

Contributions

Our contributions can be summarized as follows:

1. A simple parameter-free FW algorithm with a 2/(2 + 𝑡) step
size and a convergence rate of O (1/𝑡) in both primal gap and
Frank-Wolfe gap, without using second-order information or a
backtracking line search

2. Improved convergence rates when the optimum is contained in
the interior of X ∩ dom(𝑓), or when the set X is uniformly or
strongly convex, using the backtracking line search of
[Ped+20]

3. Numerical experiments that compare the performance of the
algorithms on generalized self-concordant objectives to those
in the existing literature

14 / 29

Contributions

Our contributions can be summarized as follows:

1. A simple parameter-free FW algorithm with a 2/(2 + 𝑡) step
size and a convergence rate of O (1/𝑡) in both primal gap and
Frank-Wolfe gap, without using second-order information or a
backtracking line search

2. Improved convergence rates when the optimum is contained in
the interior of X ∩ dom(𝑓), or when the set X is uniformly or
strongly convex, using the backtracking line search of
[Ped+20]

3. Numerical experiments that compare the performance of the
algorithms on generalized self-concordant objectives to those
in the existing literature

15 / 29

Contributions

Our contributions can be summarized as follows:

1. A simple parameter-free FW algorithm with a 2/(2 + 𝑡) step
size and a convergence rate of O (1/𝑡) in both primal gap and
Frank-Wolfe gap, without using second-order information or a
backtracking line search

2. Improved convergence rates when the optimum is contained in
the interior of X ∩ dom(𝑓), or when the set X is uniformly or
strongly convex, using the backtracking line search of
[Ped+20]

3. Numerical experiments that compare the performance of the
algorithms on generalized self-concordant objectives to those
in the existing literature

16 / 29

Monotonous Frank-Wolfe (M-FW)

1: for 𝑡 = 0 to 𝑇 do
2: v𝑡 ← argminx∈X ⟨∇ 𝑓 (x𝑡), x⟩, 𝛾𝑡 ← 2/(2 + 𝑡)
3: x𝑡+1 = x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)
4: if x𝑡+1 ∉ dom(𝑓) or 𝑓 (x𝑡+1) > 𝑓 (x𝑡) then
5: x𝑡+1 = x𝑡

Theorem (Convergence rate of M-FW)

If 𝑓 is a (𝑀, 𝜈) GSC function with 𝜈 ≥ 2. Then the M-FW satisfies:

𝑓 (x𝑡) − 𝑓 (x∗) ≤ 4(𝑇𝜈 + 1)
𝑡 + 1 max{ℎ(x0), 𝐶},

for 𝑡 ≥ 𝑇𝜈, where 𝐶and 𝑇𝜈 depends on the diameter of X, 𝜈, 𝑀,
and the largest eigenvalue of the Hessian for points y ∈ X with
𝑓 (y) ≤ 𝑓 (x0). Otherwise it holds that 𝑓 (x𝑡) ≤ 𝑓 (x0) for 𝑡 < 𝑇𝜈.

17 / 29

Monotonous Frank-Wolfe (M-FW)

1: for 𝑡 = 0 to 𝑇 do
2: v𝑡 ← argminx∈X ⟨∇ 𝑓 (x𝑡), x⟩, 𝛾𝑡 ← 2/(2 + 𝑡)
3: x𝑡+1 = x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)
4: if x𝑡+1 ∉ dom(𝑓) or 𝑓 (x𝑡+1) > 𝑓 (x𝑡) then
5: x𝑡+1 = x𝑡

Theorem (Convergence rate of M-FW)

If 𝑓 is a (𝑀, 𝜈) GSC function with 𝜈 ≥ 2. Then the M-FW satisfies:

𝑓 (x𝑡) − 𝑓 (x∗) ≤ 4(𝑇𝜈 + 1)
𝑡 + 1 max{ℎ(x0), 𝐶},

for 𝑡 ≥ 𝑇𝜈, where 𝐶and 𝑇𝜈 depends on the diameter of X, 𝜈, 𝑀,
and the largest eigenvalue of the Hessian for points y ∈ X with
𝑓 (y) ≤ 𝑓 (x0). Otherwise it holds that 𝑓 (x𝑡) ≤ 𝑓 (x0) for 𝑡 < 𝑇𝜈.

18 / 29

Proof Sketch

For GSC functions, we have a smoothness-like inequality that holds
locally around any given point x𝑡 . Denoting the primal gap by
ℎ(x𝑡) we have that:

ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ ℎ(x𝑡) (1 − 𝛾𝑡) + 𝛾2𝑡 𝐶,

for 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡), x𝑡) ≤ 1/2. But in order to compute 𝑑 we
would need knowledge of the Hessian!

However, there is a 𝑇𝜈 such that for 𝑡 ≥ 𝑇𝜈, due to the decreasing
step size 𝛾𝑡 = 2/(2 + 𝑡), we know that x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡) ∈ dom(𝑓)
and 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡), x𝑡) ≤ 1/2

19 / 29

Proof Sketch

For GSC functions, we have a smoothness-like inequality that holds
locally around any given point x𝑡 . Denoting the primal gap by
ℎ(x𝑡) we have that:

ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ ℎ(x𝑡) (1 − 𝛾𝑡) + 𝛾2𝑡 𝐶,

for 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡), x𝑡) ≤ 1/2. But in order to compute 𝑑 we
would need knowledge of the Hessian!

However, there is a 𝑇𝜈 such that for 𝑡 ≥ 𝑇𝜈, due to the decreasing
step size 𝛾𝑡 = 2/(2 + 𝑡), we know that x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡) ∈ dom(𝑓)
and 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡), x𝑡) ≤ 1/2

20 / 29

Key Inequality

For 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡), x𝑡) ≤ 1/2 we have:

ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ ℎ(x𝑡) (1 − 𝛾𝑡) + 𝛾2𝑡 𝐶, (1)

We need to ensure that 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 𝑓 (x𝑡) in order to
move, otherwise we set x𝑡+1 = x𝑡 . There are two scenarios:

Case 𝛾𝑡ℎ(x𝑡) − 𝛾2𝑡 𝐶 > 0: Going to Eq. 1 we see that this means
that 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 𝑓 (x𝑡), so we take a non-zero step size!
Using Equation 1 and induction we can prove the claim

Case 𝛾𝑡ℎ(x𝑡) − 𝛾2𝑡 𝐶 ≤ 0: Can’t ensure 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 𝑓 (x𝑡)
using Eq. 1, however, we know that 𝑓 (x𝑡+1) ≤ 𝑓 (x𝑡) by
monotonicity, and reordering 𝛾𝑡ℎ(x𝑡) − 𝛾𝑡𝐶 ≤ 0 we have that
ℎ(x𝑡) ≤ 2/(2 + 𝑡)𝐶, which proves the claim.

21 / 29

Key Inequality

For 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡), x𝑡) ≤ 1/2 we have:

ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ ℎ(x𝑡) (1 − 𝛾𝑡) + 𝛾2𝑡 𝐶, (1)

We need to ensure that 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 𝑓 (x𝑡) in order to
move, otherwise we set x𝑡+1 = x𝑡 . There are two scenarios:

Case 𝛾𝑡ℎ(x𝑡) − 𝛾2𝑡 𝐶 > 0: Going to Eq. 1 we see that this means
that 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 𝑓 (x𝑡), so we take a non-zero step size!
Using Equation 1 and induction we can prove the claim

Case 𝛾𝑡ℎ(x𝑡) − 𝛾2𝑡 𝐶 ≤ 0: Can’t ensure 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 𝑓 (x𝑡)
using Eq. 1, however, we know that 𝑓 (x𝑡+1) ≤ 𝑓 (x𝑡) by
monotonicity, and reordering 𝛾𝑡ℎ(x𝑡) − 𝛾𝑡𝐶 ≤ 0 we have that
ℎ(x𝑡) ≤ 2/(2 + 𝑡)𝐶, which proves the claim.

22 / 29

Key Inequality

For 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡), x𝑡) ≤ 1/2 we have:

ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ ℎ(x𝑡) (1 − 𝛾𝑡) + 𝛾2𝑡 𝐶, (1)

We need to ensure that 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 𝑓 (x𝑡) in order to
move, otherwise we set x𝑡+1 = x𝑡 . There are two scenarios:

Case 𝛾𝑡ℎ(x𝑡) − 𝛾2𝑡 𝐶 > 0: Going to Eq. 1 we see that this means
that 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 𝑓 (x𝑡), so we take a non-zero step size!
Using Equation 1 and induction we can prove the claim

Case 𝛾𝑡ℎ(x𝑡) − 𝛾2𝑡 𝐶 ≤ 0: Can’t ensure 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡)) ≤ 𝑓 (x𝑡)
using Eq. 1, however, we know that 𝑓 (x𝑡+1) ≤ 𝑓 (x𝑡) by
monotonicity, and reordering 𝛾𝑡ℎ(x𝑡) − 𝛾𝑡𝐶 ≤ 0 we have that
ℎ(x𝑡) ≤ 2/(2 + 𝑡)𝐶, which proves the claim.

23 / 29

Additional results

In addition, as stated before, our contributions include:

1. Proof of O(1/𝑡) convergence in Frank-Wolfe gap for M-FW.

2. Improved convergence for variant using backtracking line
search of [Ped+20] if x∗ ∈ IntX ∩ dom(𝑓), or if X is
uniformly convex

3. Linearly convergent away-step variant for polytopes using
backtracking line search of [Ped+20]

24 / 29

Computational Results

Portfolio Optimization over the probability simplex

100 101 102 103

Iteration

10−5

10−3

10−1

101

6
(x
C)

10−1 101 103

Time [s]

M-FW

FW

B-FW

B-AFW

GSC-FW

LLOO

Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)

25 / 29

Computational Results

Logistic Regression over the ℓ1 ball

100 102 104

Iteration

10−6

10−4

10−2

100

6
(x
C)

M-FW

FW

B-FW

B-AFW

GSC-FW

10−1 101 103

Time [s]

Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)

26 / 29

Computational Results

Matching over the Birkhoff polytope

100 102 104

Iteration

10−6

10−4

10−2

100

6
(x
C)

10−1 101

Time [s]

M-FW

FW

B-FW

B-AFW

GSC-FW

Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)

27 / 29

Thank you
for your attention!

28 / 29

References I

[FW56] Marguerite Frank and Philip Wolfe. “An algorithm for
quadratic programming”. In: Naval research logistics
quarterly 3.1-2 (1956), pp. 95–110.

[Pol74] Boris Teodorovich Polyak. “Minimization methods in the
presence of constraints”. In: Itogi Nauki i Tekhniki. Seriya”
Matematicheskii Analiz” 12 (1974), pp. 147–197.

[Ped+20] Fabian Pedregosa, Geoffrey Negiar, Armin Askari, and
Martin Jaggi. “Linearly Convergent Frank–Wolfe with
Backtracking Line-Search”. In: Proceedings of the 23rd
International Conference on Artificial Intelligence and
Statistics. PMLR. 2020.

[Dvu+20] Pavel Dvurechensky, Kamil Safin, Shimrit Shtern, and
Mathias Staudigl. “Generalized Self-Concordant Analysis of
Frank-Wolfe algorithms”. In: arXiv preprint
arXiv:2010.01009 (2020).

29 / 29

	Conditional Gradients
	References

