Simple steps are all you need: Frank-Wolfe and generalized self-concordant functions

Alejandro Carderera¹, Mathieu Besançon², Sebastian Pokutta^{2,3}

¹Georgia Institute of Technology, ²Zuse Institute Berlin, ³Technische Universität Berlin

Minimization of a generalized-self concordant (GSC) function over a compact convex ${\cal X}$

 $\min_{\mathbf{x}\in\mathcal{X}}f(\mathbf{x})$

Informally, GSC functions are those whose third derivative is bounded by their second derivative

Minimization of a generalized-self concordant (GSC) function over a compact convex ${\cal X}$

$\min_{\mathbf{x}\in\mathcal{X}}f(\mathbf{x})$

Informally, GSC functions are those whose third derivative is bounded by their second derivative

These functions appear in:

- 1. Interior-point formulations with barrier functions
- 2. Marginal inference with concave maximization
- 3. Logistic regression for classification

For example, if $X = \mathcal{P} \cap C$, where \mathcal{P} is a polytope, and C is a convex set for which we can easily build a barrier function $\Phi_C(\mathbf{x})$. Projecting onto X can be expensive!

Figure: f(x)

For example, if $X = \mathcal{P} \cap C$, where \mathcal{P} is a polytope, and C is a convex set for which we can easily build a barrier function $\Phi_C(\mathbf{x})$. Projecting onto X can be expensive!

Figure: f(x)

Figure: $f(x) + \mu' \Phi_C(\mathbf{x})$

For example, if $\mathcal{X} = \mathcal{P} \cap \mathcal{C}$, where \mathcal{P} is a polytope, and \mathcal{C} is a convex set for which we can easily build a barrier function $\Phi_C(\mathbf{x})$. Projecting onto X can be expensive!

Figure: f(x)

 $f(x) + \mu' \Phi_C(\mathbf{x})$

 $f(x) + \mu \Phi_C(\mathbf{x})$

For example, if $X = \mathcal{P} \cap C$, where \mathcal{P} is a polytope, and C is a convex set for which we can easily build a barrier function $\Phi_C(\mathbf{x})$. Projecting onto X can be expensive!

A benefit from this approach is that the solution is expressed as a sparse convex combination of the vertices of \mathcal{P} , this might lead to better interpretability, or generalization capabilities

NEURAL INFORMATION PROCESSING SYSTEMS 7 / 29 Focus on the Frank-Wolfe (FW) algorithm [FW56; Pol74] using:

Focus on the *Frank-Wolfe* (FW) algorithm [FW56; Pol74] using: **Domain Oracle (DO).** Given $\mathbf{x} \in \mathbb{R}^n$, return:

true if $\mathbf{x} \in \operatorname{dom}(f)$, false otherwise

Zeroth/First-Order Oracle (Z/FOO). Given $\mathbf{x} \in \text{dom}(f)$ return:

 $\nabla f(\mathbf{x}) \in \mathbb{R}^n$ and $f(\mathbf{x}) \in \mathbb{R}$

Linear Minimization Oracle (LMO). Given $\mathbf{v} \in \mathbb{R}^n$, return:

 $\operatorname*{argmin}_{\mathbf{x}\in\mathcal{X}}\langle\mathbf{v},\mathbf{x}\rangle$

Focus on the *Frank-Wolfe* (FW) algorithm [FW56; Pol74] using: **Domain Oracle (DO).** Given $\mathbf{x} \in \mathbb{R}^n$, return:

true if $\mathbf{x} \in \operatorname{dom}(f)$, false otherwise

Zeroth/First-Order Oracle (Z/FOO). Given $\mathbf{x} \in \text{dom}(f)$ return:

 $\nabla f(\mathbf{x}) \in \mathbb{R}^n$ and $f(\mathbf{x}) \in \mathbb{R}$

Linear Minimization Oracle (LMO). Given $\mathbf{v} \in \mathbb{R}^n$, return:

 $\operatorname*{argmin}_{\mathbf{x}\in\mathcal{X}}\langle\mathbf{v},\mathbf{x}\rangle$

Note that we do not assume access to a **second-order oracle** or a **backtracking line search!**

NEURAL INFORMATION PROCESSING SYSTEMS 10 / 29 Question: Why is **second-order** information (or the **backtracking line search** of [Ped+20]) used?

In order for the iterates to satisfy that $\mathbf{x}_t \in \text{dom}(f)$, and to use a smoothness-like inequality, obtaining algorithms with O(1/t) convergence rates in primal gap [Dvu+20]

Question: Why is **second-order** information (or the **backtracking line search** of [Ped+20]) used?

In order for the iterates to satisfy that $\mathbf{x}_t \in \text{dom}(f)$, and to use a smoothness-like inequality, obtaining algorithms with O(1/t) convergence rates in primal gap [Dvu+20]

Question: Can we achieve the same rates without these two ingredients?

Yes! We can substitute second-order information for a domain oracle, and a backtracking line search for a 2/(2+t) step size

1. A simple parameter-free FW algorithm with a 2/(2+t) step size and a convergence rate of O(1/t) in **both** primal gap and Frank-Wolfe gap, without using second-order information or a backtracking line search

- 1. A simple parameter-free FW algorithm with a 2/(2+t) step size and a convergence rate of O(1/t) in **both** primal gap and Frank-Wolfe gap, without using second-order information or a backtracking line search
- 2. Improved convergence rates when the optimum is contained in the interior of $X \cap \operatorname{dom}(f)$, or when the set X is uniformly or strongly convex, using the backtracking line search of $[\operatorname{Ped}+20]$

- 1. A simple parameter-free FW algorithm with a 2/(2+t) step size and a convergence rate of O(1/t) in **both** primal gap and Frank-Wolfe gap, without using second-order information or a backtracking line search
- 2. Improved convergence rates when the optimum is contained in the interior of $X \cap \operatorname{dom}(f)$, or when the set X is uniformly or strongly convex, using the backtracking line search of $[\operatorname{Ped}+20]$
- 3. Numerical experiments that compare the performance of the algorithms on generalized self-concordant objectives to those in the existing literature

Monotonous Frank-Wolfe (M-FW)

1: for
$$t = 0$$
 to T do
2: $\mathbf{v}_t \leftarrow \operatorname{argmin}_{\mathbf{x} \in X} \langle \nabla f(\mathbf{x}_t), \mathbf{x} \rangle, \ \gamma_t \leftarrow 2/(2+t)$
3: $\mathbf{x}_{t+1} = \mathbf{x}_t + \gamma_t (\mathbf{v}_t - \mathbf{x}_t)$
4: if $\mathbf{x}_{t+1} \notin \operatorname{dom}(f)$ or $f(\mathbf{x}_{t+1}) > f(\mathbf{x}_t)$ then
5: $\mathbf{x}_{t+1} = \mathbf{x}_t$

Monotonous Frank-Wolfe (M-FW)

1: for
$$t = 0$$
 to T do
2: $\mathbf{v}_t \leftarrow \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \langle \nabla f(\mathbf{x}_t), \mathbf{x} \rangle, \ \gamma_t \leftarrow 2/(2+t)$
3: $\mathbf{x}_{t+1} = \mathbf{x}_t + \gamma_t (\mathbf{v}_t - \mathbf{x}_t)$
4: if $\mathbf{x}_{t+1} \notin \operatorname{dom}(f)$ or $f(\mathbf{x}_{t+1}) > f(\mathbf{x}_t)$ then
5: $\mathbf{x}_{t+1} = \mathbf{x}_t$

Theorem (Convergence rate of M-FW)

If f is a (M, v) GSC function with $v \ge 2$. Then the M-FW satisfies:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{4(T_v + 1)}{t + 1} \max\{h(\mathbf{x}_0), C\},\$$

for $t \ge T_{\nu}$, where C and T_{ν} depends on the diameter of X, ν , M, and the largest eigenvalue of the Hessian for points $\mathbf{y} \in X$ with $f(\mathbf{y}) \le f(\mathbf{x}_0)$. Otherwise it holds that $f(\mathbf{x}_t) \le f(\mathbf{x}_0)$ for $t < T_{\nu}$. For GSC functions, we have a *smoothness-like* inequality that holds locally around any given point \mathbf{x}_t . Denoting the primal gap by $h(\mathbf{x}_t)$ we have that:

$$h(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \le h(\mathbf{x}_t)(1 - \gamma_t) + \gamma_t^2 C,$$

for $d(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t), \mathbf{x}_t) \le 1/2$. But in order to compute *d* we would need knowledge of the Hessian!

For GSC functions, we have a *smoothness-like* inequality that holds locally around any given point \mathbf{x}_t . Denoting the primal gap by $h(\mathbf{x}_t)$ we have that:

$$h(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \le h(\mathbf{x}_t)(1 - \gamma_t) + \gamma_t^2 C,$$

for $d(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t), \mathbf{x}_t) \le 1/2$. But in order to compute *d* we would need knowledge of the Hessian!

However, there is a T_{ν} such that for $t \ge T_{\nu}$, due to the decreasing step size $\gamma_t = 2/(2+t)$, we know that $\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t) \in \text{dom}(f)$ and $d(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t), \mathbf{x}_t) \le 1/2$

Key Inequality

For
$$d(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t), \mathbf{x}_t) \le 1/2$$
 we have:

$$h(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \le h(\mathbf{x}_t)(1 - \gamma_t) + \gamma_t^2 C, \tag{1}$$

We need to ensure that $f(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \le f(\mathbf{x}_t)$ in order to move, otherwise we set $\mathbf{x}_{t+1} = \mathbf{x}_t$. There are two scenarios:

Key Inequality

For
$$d(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t), \mathbf{x}_t) \le 1/2$$
 we have:

$$h(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \le h(\mathbf{x}_t)(1 - \gamma_t) + \gamma_t^2 C, \tag{1}$$

We need to ensure that $f(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \le f(\mathbf{x}_t)$ in order to move, otherwise we set $\mathbf{x}_{t+1} = \mathbf{x}_t$. There are two scenarios:

Case $\gamma_t h(\mathbf{x}_t) - \gamma_t^2 C > 0$: Going to Eq. 1 we see that this means that $f(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \leq f(\mathbf{x}_t)$, so we take a non-zero step size! Using Equation 1 and induction we can prove the claim

Key Inequality

For
$$d(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t), \mathbf{x}_t) \le 1/2$$
 we have:

$$h(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \le h(\mathbf{x}_t)(1 - \gamma_t) + \gamma_t^2 C, \tag{1}$$

We need to ensure that $f(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \le f(\mathbf{x}_t)$ in order to move, otherwise we set $\mathbf{x}_{t+1} = \mathbf{x}_t$. There are two scenarios:

Case $\gamma_t h(\mathbf{x}_t) - \gamma_t^2 C > 0$: Going to Eq. 1 we see that this means that $f(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \leq f(\mathbf{x}_t)$, so we take a non-zero step size! Using Equation 1 and induction we can prove the claim

Case $\gamma_t h(\mathbf{x}_t) - \gamma_t^2 C \le 0$: Can't ensure $f(\mathbf{x}_t + \gamma_t(\mathbf{v}_t - \mathbf{x}_t)) \le f(\mathbf{x}_t)$ using Eq. 1, however, we know that $f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t)$ by monotonicity, and reordering $\gamma_t h(\mathbf{x}_t) - \gamma_t C \le 0$ we have that $h(\mathbf{x}_t) \le 2/(2+t)C$, which proves the claim.

NEURAL INFORMATION PROCESSING SYSTEMS 23 / 29 In addition, as stated before, our contributions include:

- 1. Proof of O(1/t) convergence in Frank-Wolfe gap for M-FW.
- Improved convergence for variant using backtracking line search of [Ped+20] if x* ∈ Int X ∩ dom(f), or if X is uniformly convex
- Linearly convergent away-step variant for polytopes using backtracking line search of [Ped+20]

Portfolio Optimization over the probability simplex

Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)

NEURAL INFORMATION PROCESSING SYSTEMS 25 / 29

Computational Results

Logistic Regression over the ℓ_1 ball

Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)

Matching over the Birkhoff polytope

Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)

Thank you for your attention!

References I

- [FW56] Marguerite Frank and Philip Wolfe. "An algorithm for quadratic programming". In: Naval research logistics quarterly 3.1-2 (1956), pp. 95–110.
- [Pol74] Boris Teodorovich Polyak. "Minimization methods in the presence of constraints". In: Itogi Nauki i Tekhniki. Seriya" Matematicheskii Analiz" 12 (1974), pp. 147–197.
- [Ped+20] Fabian Pedregosa, Geoffrey Negiar, Armin Askari, and Martin Jaggi. "Linearly Convergent Frank–Wolfe with Backtracking Line-Search". In: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics. PMLR. 2020.
- [Dvu+20] Pavel Dvurechensky, Kamil Safin, Shimrit Shtern, and Mathias Staudigl. "Generalized Self-Concordant Analysis of Frank-Wolfe algorithms". In: *arXiv preprint arXiv:2010.01009* (2020).

