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Problem Setting

Minimization of a generalized-self concordant (GSC) function over
a compact convex X

min
x∈X

𝑓 (x)

Informally, GSC functions are those whose third derivative is
bounded by their second derivative

These functions appear in:

1. Interior-point formulations with barrier functions

2. Marginal inference with concave maximization

3. Logistic regression for classification
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Focus on X for which projections are hard
For example, if X = P ∩ C, where P is a polytope, and C is a
convex set for which we can easily build a barrier function ΦC (x).
Projecting onto X can be expensive!
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𝑓 (𝑥) + 𝜇′ΦC (x)
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Figure:
𝑓 (𝑥) + 𝜇ΦC (x)

A benefit from this approach is that the solution is expressed as a
sparse convex combination of the vertices of P, this might lead to
better interpretability, or generalization capabilities
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Main ingredients

Focus on the Frank-Wolfe (FW) algorithm [FW56; Pol74] using:

Domain Oracle (DO). Given x ∈ ℝ𝑛, return:

true if x ∈ dom( 𝑓 ), false otherwise

Zeroth/First-Order Oracle (Z/FOO). Given x ∈ dom( 𝑓 ) return:

∇ 𝑓 (x) ∈ ℝ𝑛 and 𝑓 (x) ∈ ℝ

Linear Minimization Oracle (LMO). Given v ∈ ℝ𝑛, return:

argmin
x∈X

⟨v, x⟩

Note that we do not assume access to a second-order oracle or a
backtracking line search!
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Question: Why is second-order information (or the backtracking
line search of [Ped+20]) used?

In order for the iterates to satisfy that x𝑡 ∈ dom( 𝑓 ), and to use a
smoothness-like inequality, obtaining algorithms with O (1/𝑡)

convergence rates in primal gap [Dvu+20]

Question: Can we achieve the same rates without these two
ingredients?

Yes! We can substitute second-order information for a domain
oracle, and a backtracking line search for a 2/(2 + 𝑡) step size
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Contributions

Our contributions can be summarized as follows:

1. A simple parameter-free FW algorithm with a 2/(2 + 𝑡) step
size and a convergence rate of O (1/𝑡) in both primal gap and
Frank-Wolfe gap, without using second-order information or a
backtracking line search

2. Improved convergence rates when the optimum is contained in
the interior of X ∩ dom( 𝑓 ), or when the set X is uniformly or
strongly convex, using the backtracking line search of
[Ped+20]

3. Numerical experiments that compare the performance of the
algorithms on generalized self-concordant objectives to those
in the existing literature
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Monotonous Frank-Wolfe (M-FW)

1: for 𝑡 = 0 to 𝑇 do
2: v𝑡 ← argminx∈X ⟨∇ 𝑓 (x𝑡 ), x⟩, 𝛾𝑡 ← 2/(2 + 𝑡)
3: x𝑡+1 = x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 )
4: if x𝑡+1 ∉ dom( 𝑓 ) or 𝑓 (x𝑡+1) > 𝑓 (x𝑡 ) then
5: x𝑡+1 = x𝑡

Theorem (Convergence rate of M-FW)

If 𝑓 is a (𝑀, 𝜈) GSC function with 𝜈 ≥ 2. Then the M-FW satisfies:

𝑓 (x𝑡 ) − 𝑓 (x∗) ≤ 4(𝑇𝜈 + 1)
𝑡 + 1 max{ℎ(x0), 𝐶},

for 𝑡 ≥ 𝑇𝜈, where 𝐶and 𝑇𝜈 depends on the diameter of X, 𝜈, 𝑀,
and the largest eigenvalue of the Hessian for points y ∈ X with
𝑓 (y) ≤ 𝑓 (x0). Otherwise it holds that 𝑓 (x𝑡 ) ≤ 𝑓 (x0) for 𝑡 < 𝑇𝜈.
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Proof Sketch

For GSC functions, we have a smoothness-like inequality that holds
locally around any given point x𝑡 . Denoting the primal gap by
ℎ(x𝑡 ) we have that:

ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 )) ≤ ℎ(x𝑡 ) (1 − 𝛾𝑡 ) + 𝛾2𝑡 𝐶,

for 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 ), x𝑡 ) ≤ 1/2. But in order to compute 𝑑 we
would need knowledge of the Hessian!

However, there is a 𝑇𝜈 such that for 𝑡 ≥ 𝑇𝜈, due to the decreasing
step size 𝛾𝑡 = 2/(2 + 𝑡), we know that x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 ) ∈ dom( 𝑓 )
and 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 ), x𝑡 ) ≤ 1/2
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Key Inequality

For 𝑑 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 ), x𝑡 ) ≤ 1/2 we have:

ℎ(x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 )) ≤ ℎ(x𝑡 ) (1 − 𝛾𝑡 ) + 𝛾2𝑡 𝐶, (1)

We need to ensure that 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 )) ≤ 𝑓 (x𝑡 ) in order to
move, otherwise we set x𝑡+1 = x𝑡 . There are two scenarios:

Case 𝛾𝑡ℎ(x𝑡 ) − 𝛾2𝑡 𝐶 > 0: Going to Eq. 1 we see that this means
that 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 )) ≤ 𝑓 (x𝑡 ), so we take a non-zero step size!
Using Equation 1 and induction we can prove the claim

Case 𝛾𝑡ℎ(x𝑡 ) − 𝛾2𝑡 𝐶 ≤ 0: Can’t ensure 𝑓 (x𝑡 + 𝛾𝑡 (v𝑡 − x𝑡 )) ≤ 𝑓 (x𝑡 )
using Eq. 1, however, we know that 𝑓 (x𝑡+1) ≤ 𝑓 (x𝑡 ) by
monotonicity, and reordering 𝛾𝑡ℎ(x𝑡 ) − 𝛾𝑡𝐶 ≤ 0 we have that
ℎ(x𝑡 ) ≤ 2/(2 + 𝑡)𝐶, which proves the claim.
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Additional results

In addition, as stated before, our contributions include:

1. Proof of O(1/𝑡) convergence in Frank-Wolfe gap for M-FW.

2. Improved convergence for variant using backtracking line
search of [Ped+20] if x∗ ∈ IntX ∩ dom( 𝑓 ), or if X is
uniformly convex

3. Linearly convergent away-step variant for polytopes using
backtracking line search of [Ped+20]
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Computational Results

Portfolio Optimization over the probability simplex
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Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)
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Computational Results

Logistic Regression over the ℓ1 ball
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Computational Results

Matching over the Birkhoff polytope
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Thank you
for your attention!
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