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Problem Setting

Minimization of a generalized-self concordant (GSC) function over
a compact convex X

min f (x)

Informally, GSC functions are those whose third derivative is
bounded by their second derivative
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Problem Setting

Minimization of a generalized-self concordant (GSC) function over
a compact convex X

mip f (x)

Informally, GSC functions are those whose third derivative is
bounded by their second derivative

These functions appear in:
1. Interior-point formulations with barrier functions
2. Marginal inference with concave maximization

3. Logistic regression for classification
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Focus on X for which projections are hard

For example, if X =P N C, where P is a polytope, and C is a
convex set for which we can easily build a barrier function ®¢(x).
Projecting onto X can be expensive!

Figure: f(x)
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Focus on X for which projections are hard

For example, if X =P N C, where P is a polytope, and C is a
convex set for which we can easily build a barrier function ®¢(x).
Projecting onto X can be expensive!

. Figure:
Figure: f(x) F(xX) + ' ®c(x)
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Focus on X for which projections are hard

For example, if X =P N C, where P is a polytope, and C is a
convex set for which we can easily build a barrier function ®¢(x).
Projecting onto X can be expensive!

_ Figure: Figure:
Figure: f(x) fx)+ ' ®c(x) f(x) + p®c(x)
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Focus on X for which projections are hard

For example, if X =P N C, where P is a polytope, and C is a
convex set for which we can easily build a barrier function ®¢(x).
Projecting onto X can be expensive!

_ Figure: Figure:
Figure: f(x) fx)+ ' ®c(x) f(x) + p®c(x)

A benefit from this approach is that the solution is expressed as a
sparse convex combination of the vertices of $, this might lead to

better interpretability, or generalization capabilities o
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Main ingredients

Focus on the Frank-Wolfe (FW) algorithm [ ; | using:
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Main ingredients

Focus on the Frank-Wolfe (FW) algorithm [ ; | using:
Domain Oracle (DO). Given x € R", return:

true if x € dom(f), false otherwise
Zeroth /First-Order Oracle (Z/FOO). Given x € dom(f) return:
Vf(x) e R" and f(x) € R
Linear Minimization Oracle (LMO). Given v € R", return:

argmin (v, X)
xeX
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Main ingredients

Focus on the Frank-Wolfe (FW) algorithm [
Domain Oracle (DO). Given x € R", return:

; | using:

true if x € dom(f), false otherwise
Zeroth /First-Order Oracle (Z/FOO). Given x € dom(f) return:
Vf(x) e R" and f(x) € R
Linear Minimization Oracle (LMO). Given v € R", return:

argmin (v, X)
xeX

Note that we do not assume access to a second-order oracle or a
backtracking line search! o
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Question: Why is second-order information (or the backtracking
line search of | ]) used?

In order for the iterates to satisfy that x, € dom(f), and to use a
smoothness-like inequality, obtaining algorithms with O (1/t)
convergence rates in primal gap [ )|
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Question: Why is second-order information (or the backtracking
line search of | ]) used?

In order for the iterates to satisfy that x, € dom(f), and to use a
smoothness-like inequality, obtaining algorithms with O (1/t)
convergence rates in primal gap [ )|

Question: Can we achieve the same rates without these two
ingredients?

Yes! We can substitute second-order information for a domain
oracle, and a backtracking line search for a 2/(2 +1t) step size




Contributions

Our contributions can be summarized as follows:




Contributions

Our contributions can be summarized as follows:

1. A simple parameter-free FW algorithm with a 2/(2 +1) step
size and a convergence rate of O (1/t) in both primal gap and
Frank-Wolfe gap, without using second-order information or a
backtracking line search
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Contributions

Our contributions can be summarized as follows:

1. A simple parameter-free FW algorithm with a 2/(2 +1) step
size and a convergence rate of O (1/t) in both primal gap and
Frank-Wolfe gap, without using second-order information or a
backtracking line search

2. Improved convergence rates when the optimum is contained in

the interior of X N dom( f), or when the set X is uniformly or
strongly convex, using the backtracking line search of

[ ]
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Contributions

Our contributions can be summarized as follows:

1. A simple parameter-free FW algorithm with a 2/(2 +1) step
size and a convergence rate of O (1/t) in both primal gap and
Frank-Wolfe gap, without using second-order information or a
backtracking line search

2. Improved convergence rates when the optimum is contained in
the interior of X N dom( f), or when the set X is uniformly or
strongly convex, using the backtracking line search of

[ ]

3. Numerical experiments that compare the performance of the
algorithms on generalized self-concordant objectives to those
in the existing literature




Monotonous Frank-Wolfe (M-FW)
1: fort=0to T do
v, «— argmin, .y (Vf(x;),X), vr < 2/(2+1)
X4l = X + Ve (Ve — X4)
if x;41 € dom(f) or f(x1) > f(x;) then

X1 = Xt
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Monotonous Frank-Wolfe (M-FW)
1: fort=0to T do
v, «— argmin, .y (Vf(x;),X), vr < 2/(2+1)
X4l = X + Ve (Ve — X4)
if x;41 € dom(f) or f(x1) > f(x;) then

X1 = Xt

Theorem (Convergence rate of M-FW)
If fisa (M,v) GSC function with v > 2. Then the M-FW satisfies:

4T, +1)

g maxik(x), Ch

f(x) - f(X) <
fort > T,, where Cand T, depends on the diameter of X, v, M,
and the largest eigenvalue of the Hessian for points y € X with
f(y) < f(x0). Otherwise it holds that f(x,) < f(xq) fort < T,. )
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Proof Sketch

For GSC functions, we have a smoothness-like inequality that holds
locally around any given point x;. Denoting the primal gap by
h(x;) we have that:

h(x; +y: (Vi = %)) < h(x)(1 = y,) + 7;2C,

for d(x; + y:(vy — X4),%x;) < 1/2. But in order to compute d we
would need knowledge of the Hessian!
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Proof Sketch

For GSC functions, we have a smoothness-like inequality that holds
locally around any given point x;. Denoting the primal gap by
h(x;) we have that:

h(x; +y: (Vi = %)) < h(x)(1 = y,) + 7;2C,

for d(x; + y:(vy — X4),%x;) < 1/2. But in order to compute d we
would need knowledge of the Hessian!

However, there is a T, such that for r > T,,, due to the decreasing
step size y; = 2/(2 +1t), we know that x; + v, (v, — x;) € dom(f)
and d(x; + y: (v — %), %xs) < 1/2

ROG Y
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Key Inequality

For d(x; +v;(v; —X;),%X;) < 1/2 we have:

h(xe + (Ve = %)) < h(x)(1 = 7y,) + 7;2C’ (1)

We need to ensure that f(x; +v:(v: —x;)) < f(X¢) in order to
move, otherwise we set X;41 = X;. | here are two scenarios:




Key Inequality

For d(x; +v;(v; —X;),%X;) < 1/2 we have:

h(xe + (Ve = %)) < h(x)(1 = 7y,) + 7;2C’ (1)

We need to ensure that f(x; +v:(v: —x;)) < f(X¢) in order to
move, otherwise we set X;41 = X;. | here are two scenarios:

Case y,h(x;) — y2C > 0: Going to Eq. 1 we see that this means
that f(x; + y:(v: — x;)) < f(x;), so we take a non-zero step size!
Using Equation 1 and induction we can prove the claim

AL,
NEURAL INFORMATION




Key Inequality

For d(x; +v:(vy —X;),%X;) < 1/2 we have:

h(xe +7: (Ve = %)) < h(x) (1= 72) +77C, (1)

We need to ensure that f(x; +v:(v: —x;)) < f(X¢) in order to
move, otherwise we set X;41 = X;. | here are two scenarios:

Case y,h(x;) — y2C > 0: Going to Eq. 1 we see that this means
that f(x; + y:(v: — x;)) < f(x;), so we take a non-zero step size!
Using Equation 1 and induction we can prove the claim

Case y,h(x;) — y2C < 0: Can't ensure f(x; +y:(v, — x;)) < f(x;)
using Eq. 1, however, we know that f(x;4+1) < f(x;) by
monotonicity, and reordering y;h(x;) — v;C < 0 we have that
h(x;) < 2/(2+1t)C, which proves the claim. s,
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Additional results

In addition, as stated before, our contributions include:
1. Proof of O(1/t) convergence in Frank-Wolfe gap for M-FW.

2. Improved convergence for variant using backtracking line
search of [ ] if x* € Int X N dom(f), or if X is
uniformly convex

3. Linearly convergent away-step variant for polytopes using
backtracking line search of | ]
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Computational Results

Portfolio Optimization over the probability simplex

g(xy)
S

1073

|4 GSC-FW
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Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)
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Computational Results

Logistic Regression over the ¢; ball
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Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)
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Computational Results

Matching over the Birkhoff polytope

- GSC-FW
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Figure: Frank-Wolfe gap vs. iteration (left) and time in seconds (right)
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Thank you
for your attention!
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