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Problem Setting

Goal is L-smooth u-strongly convex optimization over polytope X.

min f(x)

xeX

Main ingredients:
First Order Oracle (FOO). Given x € X and a differentiable
convex function f: R" — R, return:

Vf(x) e R" and f(x) € R
Linear Minimization Oracle (LMO). Given v € R", return:

argmin (v, X)
xeX



Conditional Gradients

Focus on the Conditional Gradients/Frank-Wolfe algorithm |
| and its variants. The basic variant is:

f(®)

CG Algorithm.
Input: xy € X, stepsizes vy, € (0, 1].

1: fortr=0toTdo '\ .
2 v, = argmin, x (Vf(x),x)
30 X1 =X+ (Ve —Xy)

4: end for

F&x) +(Vf(xe),x = x1)



Optimal Complexity

Optimal projection-based methods for this class of functions
achieve an e-optimal in T = O (\/%log %) first-order calls | :
]

Q: Can CG-type methods have the same oracle complexity, both in
terms of FOO to f and LMO to X7



Optimal Complexity

Optimal projection-based methods for this class of functions
achieve an e-optimal in T = O (\/%log %) first-order calls | :

]

Q: Can CG-type methods have the same oracle complexity, both in
terms of FOO to f and LMO to X7

Yes! Albeit locally [: | if we know L and p.



Contributions

The contributions are as follows:

1. Parameter-free Locally-accelerated Conditional Gradient
(PF-LaCG) algorithm.

2. Near-optimal and parameter-free accelerated algorithm (ACC)
with inexact projections.



Main ldeas

The PF-LaCG algorithm | | couples the Away-step
Frank-Wolfe (AFW) | ; ] and ACC, a variant of the
accelerated algorithm [ |, and periodically restarts when a

measure of optimality is halved, and in this case an upper bound
on the primal gap, denoted as:

w(x,S) < _max (Vf(x),u=v).

where S is a proper support ! of x.

LA support S of x is a proper support of x if the weights associated with
the convex decomposition are positive.



Main |dea

w(x,S) = JJhax (VF(x),u—v).

This allows us to:
e Maintain a computable global measure of optimality without
knowing L and pu.
e Couple the AFW algorithm and the ACC algorithm while
guaranteeing monotonic progress



Algorithm Sketch

At a high level:

1. PF-LaCG runs AFW and ACC in parallel, and restarts every
time AFW halves w(x,S). After every restart choose point
with lower value of w(x,S) and potentially update active set
of ACC

2. After a finite number of iterations independent of €, the active
set of AFW contains x* and ACC converges to the optimal at
an accelerated rate




Convergence Rate of PF-LaCG

Theorem (Convergence rate of PF-LaCG)

Let f be L-smooth and u-strongly convex. The number of calls to
FOO and LMO required to reach an e-optimal solution, measured
in terms of w(x, S), to the minimization problem satisfies:

. LD? 1
T =mins O 5 log —|,
uo €

———————
AFW bound

e 522

Burn-in Locally-accelerated convergence

K +0

——

where K is a constant that is independent of €.




Computational Results

Structured LASSO Regression?
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2Note: Other measures of optimality can be bounded above by w(x,S).



Summary

e We introduce PF-LaCG, a novel parameter-free projection-free
algorithm for minimizing smooth and strongly convex
functions over convex polytopes.

e After a finite burn-in phase independent of €, PF-LaCG
achieves a near-optimal accelerated convergence rate without
knowledge of any problem parameters.

o We demonstrate PF-LaCG'’s practical improvements over
non-accelerated algorithms, both in iteration count and
wall-clock time.
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