Parameter-free Locally Accelerated Conditional Gradients

Alejandro Carderera ¹, Jelena Diakonikolas ², **Cheuk Yin Lin** ², Sebastian Pokutta ^{3, 4}

¹Georgia Institute of Technology, ²University of Wisconsin-Madison, ³Zuse Institute Berlin, ⁴Technische Universität Berlin

ICML 2021

Problem Setting

Goal is L-smooth μ -strongly convex optimization over polytope X.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

Main ingredients:

First Order Oracle (FOO). Given $\mathbf{x} \in \mathcal{X}$ and a differentiable convex function $f : \mathbb{R}^n \to \mathbb{R}$, return:

$$\nabla f(\mathbf{x}) \in \mathbb{R}^n \text{ and } f(\mathbf{x}) \in \mathbb{R}$$

Linear Minimization Oracle (LMO). Given $\mathbf{v} \in \mathbb{R}^n$, return:

$$\underset{\mathbf{x}\in\mathcal{X}}{\operatorname{argmin}}\,\langle\mathbf{v},\mathbf{x}\rangle$$

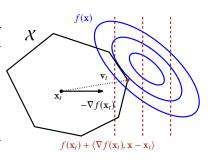
Conditional Gradients

Focus on the *Conditional Gradients/Frank-Wolfe* algorithm [FW56; Pol74] and its variants. The basic variant is:

CG Algorithm.

Input: $\mathbf{x}_0 \in \mathcal{X}$, stepsizes $\gamma_t \in (0, 1]$.

- 1: **for** t = 0 to T **do**
- 2: $\mathbf{v}_t = \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \langle \nabla f(\mathbf{x}_t), \mathbf{x} \rangle$
- 3: $\mathbf{x}_{t+1} = \mathbf{x}_t + \gamma_t (\mathbf{v}_t \mathbf{x}_t)$
- 4: end for



Optimal Complexity

Optimal **projection-based** methods for this class of functions achieve an ϵ -optimal in $T = O\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)$ first-order calls [NY83; Nes83].

Q: Can CG-type methods have the same oracle complexity, both in terms of FOO to f and LMO to X?

Optimal Complexity

Optimal **projection-based** methods for this class of functions achieve an ϵ -optimal in $T = O\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)$ first-order calls [NY83; Nes83].

Q: Can CG-type methods have the same oracle complexity, both in terms of FOO to f and LMO to X?

Yes! Albeit locally [DCP20] if we know L and μ .

Contributions

The contributions are as follows:

- Parameter-free Locally-accelerated Conditional Gradient (PF-LaCG) algorithm.
- 2. Near-optimal and parameter-free accelerated algorithm (ACC) with inexact projections.

Main Ideas

The PF-LaCG algorithm [Car+21] couples the *Away-step Frank-Wolfe* (AFW) [GM86; LJ15] and ACC, a variant of the accelerated algorithm [CDO18], and periodically restarts when a measure of optimality is halved, and in this case **an upper bound on the primal gap**, denoted as:

$$w(\mathbf{x}, \mathcal{S}) \stackrel{\text{def}}{=} \max_{\mathbf{u} \in \mathcal{X}, \mathbf{v} \in \mathcal{S}} \langle \nabla f(\mathbf{x}), \mathbf{u} - \mathbf{v} \rangle.$$

where \mathcal{S} is a proper support 1 of \mathbf{x} .

 $^{^1}$ A support $\mathcal S$ of x is a proper support of x if the weights associated with the convex decomposition are positive.

Main Idea

$$w(\mathbf{x}, \mathcal{S}) \stackrel{\text{def}}{=} \max_{\mathbf{u} \in \mathcal{X}, \mathbf{v} \in \mathcal{S}} \langle \nabla f(\mathbf{x}), \mathbf{u} - \mathbf{v} \rangle.$$

This allows us to:

- Maintain a computable global measure of optimality without knowing L and μ.
- Couple the AFW algorithm and the ACC algorithm while guaranteeing monotonic progress

Algorithm Sketch

At a high level:

- 1. PF-LaCG runs AFW and ACC in parallel, and restarts every time AFW halves $w(\mathbf{x}, \mathcal{S})$. After every restart choose point with lower value of $w(\mathbf{x}, \mathcal{S})$ and potentially update active set of ACC
- 2. After a finite number of iterations independent of ϵ , the active set of AFW contains \mathbf{x}^* and ACC converges to the optimal at an accelerated rate

Convergence Rate of PF-LaCG

Theorem (Convergence rate of PF-LaCG)

Let f be L-smooth and μ -strongly convex. The number of calls to FOO and LMO required to reach an ϵ -optimal solution, measured in terms of $w(\mathbf{x}, \mathcal{S})$, to the minimization problem satisfies:

$$T = \min \left\{ \underbrace{O\left(\frac{LD^2}{\mu\delta^2}\log\frac{1}{\epsilon}\right)}_{AFW\ bound}, \\ \underbrace{K + O\left(\sqrt{\frac{L}{\mu}}\log\left(\frac{L}{\mu}\right)\log\left(\frac{LD}{\mu\delta}\right)\log\frac{1}{\epsilon}\right)}_{Burn-in} \right\}_{Locally-accelerated\ convergence}$$

where K is a constant that is independent of ϵ .

Computational Results

Structured LASSO Regression²

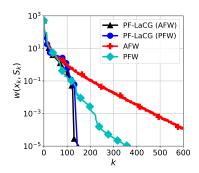


Figure: $w(\mathbf{x}_t, \mathcal{S}_t)$ vs. iteration

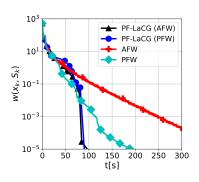


Figure: $w(\mathbf{x}_t, \mathcal{S}_t)$ vs. time

²Note: Other measures of optimality can be bounded above by $w(\mathbf{x}, \mathcal{S})$.

Summary

- We introduce PF-LaCG, a novel parameter-free projection-free algorithm for minimizing smooth and strongly convex functions over convex polytopes.
- After a finite burn-in phase independent of ϵ , PF-LaCG achieves a near-optimal accelerated convergence rate without knowledge of any problem parameters.
- We demonstrate PF-LaCG's practical improvements over non-accelerated algorithms, both in iteration count and wall-clock time.

References I

- [FW56] Marguerite Frank and Philip Wolfe. "An algorithm for quadratic programming". In: Naval research logistics quarterly 3.1-2 (1956), pp. 95–110.
- [Pol74] Boris Teodorovich Polyak. "Minimization methods in the presence of constraints". In: Itogi Nauki i Tekhniki. Seriya" Matematicheskii Analiz" 12 (1974), pp. 147–197.
- [NY83] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. "Problem complexity and method efficiency in optimization". In: Wiley-Interscience Series in Discrete Mathematics 15 (1983).
- [Nes83] Y Nesterov. "A method of solving a convex programming problem with convergence rate $O(\frac{1}{k^2})$ ". In: Soviet Math. Dokl. Vol. 27. 1983.

References II

- [DCP20] Jelena Diakonikolas, Alejandro Carderera, and Sebastian Pokutta. "Locally accelerated conditional gradients". In: International Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 1737–1747.
- [Car+21] Alejandro Carderera, Jelena Diakonikolas, Cheuk Yin Lin, and Sebastian Pokutta. "Parameter-free Locally Accelerated Conditional Gradients". In: To appear in International Conference on Machine Learning. 2021.
- [GM86] Jacques Guélat and Patrice Marcotte. "Some comments on Wolfe's 'away step". In: *Mathematical Programming* 35.1 (1986), pp. 110–119.
- [LJ15] Simon Lacoste-Julien and Martin Jaggi. "On the Global Linear Convergence of Frank-Wolfe Optimization Variants". In: Advances in Neural Information Processing Systems. 2015, pp. 496–504.

References III

[CDO18] Michael B. Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. "On Acceleration with Noise-Corrupted Gradients". In: *Proc. ICML'18*. 2018.