Locally Accelerated Conditional Gradients

Jelena Diakonikolas 1, Alejandro Carderera 2, Sebastian Pokutta 3, 4

1UC Berkeley, 2Georgia Institute of Technology, 3Zuse Institute Berlin, 4Technische Universität Berlin

AISTATS 2020
Goal is L-smooth μ-strongly convex optimization over polytope \mathcal{X}.

$$\min_{x \in \mathcal{X}} f(x)$$
Goal is L-smooth μ-strongly convex optimization over polytope \mathcal{X}.

$$\min_{x \in \mathcal{X}} f(x)$$

Main ingredients:

First-order (FO) oracle. Given $x \in \mathcal{X}$ and a differentiable convex function $f : \mathbb{R}^n \to \mathbb{R}$, return:

$$\nabla f(x) \in \mathbb{R}^n \text{ and } f(x) \in \mathbb{R}$$

Linear optimization (LO) oracle. Given $v \in \mathbb{R}^n$, return:

$$\arg\min_{x \in \mathcal{X}} \langle v, x \rangle$$
Goal is L-smooth μ-strongly convex optimization over polytope \mathcal{X}.

$$\min_{x \in \mathcal{X}} f(x)$$

Main ingredients:

First-order (FO) oracle. Given $x \in \mathcal{X}$ and a differentiable convex function $f : \mathbb{R}^n \to \mathbb{R}$, return:

$$\nabla f(x) \in \mathbb{R}^n \text{ and } f(x) \in \mathbb{R}$$

Linear optimization (LO) oracle. Given $v \in \mathbb{R}^n$, return:

$$\arg\min_{x \in \mathcal{X}} \langle v, x \rangle$$

Focus on *Conditional Gradients/Frank-Wolfe* algorithm [FW56; Pol74] and its variants such as the *Away-step Conditional Gradients/Frank-Wolfe* (AFW) algorithm [Wol70; GM86].
Choose direction that guarantees more progress:

1. **Frank-Wolfe direction:**
 \[
 \argmin_{y \in \mathcal{X}} \langle \nabla f(x), y \rangle - x.
 \]

2. **Away-step direction:**
 \[
 x - \argmax_{y \in \mathcal{S}} \langle \nabla f(x), y \rangle,
 \]
 where \(\mathcal{S} \) is the active set of \(x \).
Convergence rate for \(L \)-smooth \(\mu \)-strongly convex function \(f \)

Theorem (Convergence rate of AFW)

[LJ15] Suppose that \(f \) is \(L \)-smooth \(\mu \)-strongly convex over a polytope \(\mathcal{X} \), the number of steps \(T \) required to reach an \(\epsilon \)-optimal solution to the minimization problem satisfies,

\[
T = \mathcal{O} \left(\frac{L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \frac{1}{\epsilon} \right),
\]

where \(D \) and \(\delta \) are the diameter and pyramidal width of \(\mathcal{X} \).
However, we know that optimal methods for this class of functions achieve an ϵ solution in $T = \mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$ first-order calls [NY83; Nes83].

Can CG achieve these convergence rates **globally**?
However, we know that optimal methods for this class of functions achieve an ϵ solution in $T = \mathcal{O} \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right)$ first-order calls [NY83; Nes83].

Can CG achieve these convergence rates **globally**?

Dimension independent global acceleration is not possible [Jag13; Lan13].
Objectives:

- Dimension independent global acceleration.
Objectives:

- Dimension independent global acceleration.
- Dimension independent local acceleration.
Locally Accelerated Conditional Gradients (LaCG)

What do we mean by local acceleration?

After a constant number of iterations that does not depend on ϵ, accelerate the convergence.
Let S_t denote the CG active set at iteration t.

What we know:
\[
\exists r > 0 \text{ s.t. if } \|x^* - x_T\| \leq r \Rightarrow x^* \in \text{conv}(S_T).
\]

Naive Idea: Run an accelerated first-order method (AGD) on $\text{conv}(S_T)$.
We would want the following:
We would want the following:

Problem: The value of r is not known, we don’t know when to switch from AFW to AGD.
We would want the following:

Problem: The value of r is not known, we don’t know when to switch from AFW to AGD.

Challenge: Create algorithm that accelerates without knowledge of r.
Run AFW and restart AGD by running it over a new conv (S_t) every H iterations.

Trajectory AFW iterates

- Restart
Run AFW and restart AGD by running it over a new conv (S_t) every H iterations.

- Every H iterations restart AGD and run it over conv (S_t).
Run AFW and restart AGD by running it over a new conv \((S_t)\) every \(H\) iterations.

- Every \(H\) iterations restart AGD and run it over conv \((S_t)\).
- Have AGD and AFW compete for progress at each iteration between restarts.
Run AFW and restart AGD by running it over a new conv \((S_t) \) every \(H \) iterations.

- Every \(H \) iterations restart AGD and run it over conv \((S_t) \).
- Have AGD and AFW compete for progress at each iteration between restarts.
- Space out restarts so that you only lose a factor of 2 in the AGD convergence rate.
What we will obtain:

- AFW-driven convergence
- AGD-driven convergence
- Restart
Algorithm 1 Locally Accelerated Conditional Gradients

1: Initialize $C_0 = S_0$, $x_0 = x_0^{AFW} = x_0^{AGD}$, $H = O \left(\sqrt{\frac{L}{\mu} \log \frac{L}{\mu}} \right)$
2: for $t = 1$ to T do
3: \hspace{1em} $x_{t+1}^{AFW}, S_{t+1} \leftarrow AFW(x_t^{AFW}, S_t)$ \hspace{1em} \text{▷ AFW step}
4: \hspace{1em} if Vertex has been added to S since restart then
5: \hspace{2em} if $t = Hn$ for some $n \in \mathbb{N}$ then
6: \hspace{3em} $x_{t+1}^{AGD} \leftarrow \arg\min_{x \in \{x_t^{AFW}, x_t^{AGD}\}} f(x)$ \hspace{1em} \text{▷ Restart AGD}
7: \hspace{2em} else
8: \hspace{3em} $x_{t+1}^{AGD} \leftarrow AGD(x_t^{AGD}, C_t)$ \hspace{1em} \text{▷ Run AGD decoupled from AFW}
9: \hspace{3em} $C_{t+1} \leftarrow C_t$
10: \hspace{2em} end if
11: \hspace{1em} else
12: \hspace{2em} $x_{t+1}^{AGD} \leftarrow AGD(x_t, C_t)$ \hspace{1em} \text{▷ Run AGD coupled with AFW}
13: \hspace{2em} $C_{t+1} \leftarrow \text{conv}(S_{t+1})$
14: \hspace{2em} end if
15: \hspace{1em} end if
16: \hspace{1em} $x_{t+1} \leftarrow \arg\min_{x \in \{x_{t+1}^{AFW}, x_{t+1}^{AGD}, x_t\}} f(x)$ \hspace{1em} \text{▷ Monotonicity}
17: end for
Analysis relies on the *Approximate Duality Gap* technique [DO19] and the AGD algorithm used is a *Modified μAGD+* algorithm [CDO18; DCP19].

Theorem (Convergence rate of μAGD+.)

Let f be L-smooth and $μ$-strongly convex and let $\{C_i\}_{i=0}^t$ be a sequence of convex subsets of \mathcal{X} such that $C_i \subseteq C_{i-1}$ for all i and $x^* \in \bigcap_{i=0}^t C_i$, then the $μAGD+$ achieves an ϵ-optimal solution in a number of iterations T that satisfies:

$$T = O \left(\sqrt{\frac{L}{\mu} \log \frac{1}{\epsilon}} \right)$$
Theorem (Convergence rate of LaCG)

Let f be L-smooth and μ-strongly convex and let r be the critical radius. The number of steps T required to reach an ϵ-optimal solution to the minimization problem satisfies:

$$t = \min \left\{ \mathcal{O} \left(\frac{L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \frac{1}{\epsilon} \right), K + \mathcal{O} \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right) \right\},$$

where $K = \frac{8L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \left(\frac{2(f(x_0) - f^*)}{\mu r^2} \right)$.
Theorem (Convergence rate of LaCG)

Let f be L-smooth and μ-strongly convex and let r be the critical radius. The number of steps T required to reach an ϵ-optimal solution to the minimization problem satisfies:

$$t = \min \left\{ O \left(\frac{L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \frac{1}{\epsilon} \right), K + O \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right) \right\},$$

where $K = \frac{8L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \left(\frac{2(f(x_0) - f^*)}{\mu r^2} \right)$.

AFW-driven convergence
AGD-driven convergence
Restart
Despite the faster convergence rate after the burn-in phase, how does LaCG perform with respect to other projection-free algorithms?
Simplex in \mathbb{R}^{1500} with $L/\mu = 1000$

Figure: Primal gap vs. iteration

When close enough to x^* (after burn-in phase), there is a significant speedup in the convergence rate.
Birkhoff polytope in $\mathbb{R}^{400\times400}$ with $L/\mu = 100$

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time
Structured Regression over MIPLIB Polytope (ran14x18-disj-8)

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time
Thank you for your attention.
References I

References IV

Can CG achieve these convergence rates **globally**?

Example ([Lan13; Jag13] \(f(x) = \|x\|^2 \) over unit simplex in \(\mathbb{R}^n \).)

We know the optimal solution is given by \(x^* = \mathbb{1}/n \). CG can incorporate at most one vertex in each iteration, if we start from a vertex \(x_0 \), in iteration \(t < n \) we have that:

\[
f(x_t) - f(x^*) \geq \frac{1}{t} - \frac{1}{n}.
\]
Considering iterations such that $t \leq \lfloor n/2 \rfloor$ and rearranging into a linear convergence contraction we have:

$$T = \Omega \left(\frac{1}{r} \log \frac{1}{\varepsilon} \right),$$

where $r \leq 2 \frac{\log 2 t}{2 t}$.
Considering iterations such that \(t \leq \lceil n/2 \rceil \) and rearranging into a linear convergence contraction we have:

\[
T = \Omega \left(\frac{1}{r} \log \frac{1}{\epsilon} \right),
\]

where \(r \leq 2 \frac{\log 2t}{2t} \).

Convergence rate of the CG variants for this problem instance: \(r = \frac{1}{4t} \).

At best a global logarithmic improvement in the convergence rate, therefore **global acceleration in Nesterov’s sense is not possible.**
Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov’s Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [LZ16].
Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov’s Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [LZ16].

Catalyst Augmented AFW: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [LMH15].
Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov’s Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [LZ16].

Catalyst Augmented AFW: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [LMH15].

Complexity for \(L\)-smooth \(\mu\)-strongly convex \(f\).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>LO Calls</th>
<th>FO Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGS</td>
<td>(\mathcal{O}\left(\frac{LD^2}{\epsilon}\right))</td>
<td>(\mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right))</td>
</tr>
<tr>
<td>Catalyst</td>
<td>(\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right))</td>
<td>(\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}} \left(\frac{D}{\delta}\right)^2 \log \frac{1}{\epsilon}\right))</td>
</tr>
</tbody>
</table>
Congestion Balancing in Traffic Networks

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time