Locally Accelerated Conditional Gradients

Locally Accelerated Conditional Gradients

Jelena Diakonikolas ¹, Alejandro Carderera ², Sebastian Pokutta ^{3, 4}

¹UC Berkeley, ²Georgia Institute of Technology, ³Zuse Institute Berlin, ⁴Technische Universität Berlin

AISTATS 2020

Global Acceleratio

Locally Accelerated Conditional Gradient

References 0000

Goal is L-smooth μ -strongly convex optimization over polytope \mathcal{X} .

 $\min_{x\in\mathcal{X}}f(x)$

Goal is L-smooth μ -strongly convex optimization over polytope \mathcal{X} .

 $\min_{x\in\mathcal{X}}f(x)$

Main ingredients: **First-order (FO) oracle.** Given $x \in \mathcal{X}$ and a differentiable convex function $f : \mathbb{R}^n \to \mathbb{R}$, return:

 $\nabla f(x) \in \mathbb{R}^n$ and $f(x) \in \mathbb{R}$

Linear optimization (LO) oracle. Given $v \in \mathbb{R}^n$, return:

 $\operatorname*{argmin}_{x \in \mathcal{X}} \left\langle v, x \right\rangle$

Goal is L-smooth μ -strongly convex optimization over polytope \mathcal{X} .

 $\min_{x\in\mathcal{X}}f(x)$

Main ingredients: **First-order (FO) oracle.** Given $x \in \mathcal{X}$ and a differentiable convex function $f : \mathbb{R}^n \to \mathbb{R}$, return:

 $\nabla f(x) \in \mathbb{R}^n$ and $f(x) \in \mathbb{R}$

Linear optimization (LO) oracle. Given $v \in \mathbb{R}^n$, return:

 $\operatorname*{argmin}_{x\in\mathcal{X}}\left\langle v,x\right\rangle$

Focus on *Conditional Gradients/Frank-Wolfe* algorithm [FW56; Pol74] and its variants such as the *Away-step Conditional Gradients/Frank-Wolfe* (AFW) algorithm [Wol70; GM86].

Conditional Gradients $0 \bullet 0$

Global Acceleration

Locally Accelerated Conditional Gradients

References 0000

Away-step Conditional Gradients (AFW)

Choose direction that guarantees more progress:

Figure: Away-step CG (AFW)

- 1. Frank-Wolfe direction:
 - $\operatorname*{argmin}_{y\in\mathcal{X}} \langle \nabla f(x), y \rangle x.$
- 2. Away-step direction:
 - $x \operatorname*{argmax}_{y \in \mathcal{S}} \langle \nabla f(x), y \rangle$,

where S is the *active set* of x.

Global Acceleration

Locally Accelerated Conditional Gradients

References 0000

Convergence rate for *L*-smooth μ -strongly convex *f*

Theorem (Convergence rate of AFW)

[LJ15] Suppose that f is L-smooth μ -strongly convex over a polytope \mathcal{X} , the number of steps T required to reach an ϵ -optimal solution to the minimization problem satisfies,

$$T = \mathcal{O}\left(rac{L}{\mu}\left(rac{D}{\delta}
ight)^2\lograc{1}{\epsilon}
ight),$$

where D and δ are the diameter and pyramidal width of \mathcal{X} .

Global Acceleration

Locally Accelerated Conditional Gradients

References 0000

CG Global Acceleration

However, we know that optimal methods for this class of functions achieve an ϵ solution in $T = O\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$ first-order calls [NY83; Nes83].

Can CG achieve these convergence rates globally?

Global Acceleration

Locally Accelerated Conditional Gradients

References

CG Global Acceleration

However, we know that optimal methods for this class of functions achieve an ϵ solution in $T = O\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$ first-order calls [NY83; Nes83].

Can CG achieve these convergence rates globally?

Dimension independent global acceleration is not possible [Jag13; Lan13].

Objectives:

• Dimension independent global acceleration.

Objectives:

- Dimension independent global acceleration.
- Dimension independent local acceleration.

Global Acceleration

Locally Accelerated Conditional Gradients ••••••••• References 0000

Locally Accelerated Conditional Gradients (LaCG)

What do we mean by local acceleration?

After a constant number of iterations that does not depend on ϵ , accelerate the convergence.

Let S_t denote the CG active set at iteration t.

What we know:

 $\exists r > 0 \text{ s.t. if } \|x^* - x_T\| \leq r \Rightarrow x^* \in \operatorname{conv}(\mathcal{S}_T).$

Naive Idea: Run an accelerated first-order method (AGD) on $conv(\mathcal{S}_{\mathcal{T}})$.

We would want the following:

We would want the following:

Problem: The value of r is not known, we don't know when to switch from AFW to AGD.

We would want the following:

Problem: The value of r is not known, we don't know when to switch from AFW to AGD.

Challenge: Create algorithm that accelerates without knowledge of r.

Run AFW and restart AGD by running it over a new conv (S_t) every *H* iterations.

References 0000

Run AFW and restart AGD by running it over a new conv (S_t) every *H* iterations.

• Every *H* iterations restart AGD and run it over conv (S_t) .

References

Run AFW and restart AGD by running it over a new conv (S_t) every *H* iterations.

- Every *H* iterations restart AGD and run it over conv (S_t) .
- Have AGD and AFW compete for progress at each iteration between restarts.

onditional Gradients Global Acceleration 00 000 Locally Accelerated Conditional Gradients

References

Run AFW and restart AGD by running it over a new conv (S_t) every H iterations.

- Every *H* iterations restart AGD and run it over conv (S_t) .
- Have AGD and AFW compete for progress at each iteration between restarts.
- Space out restarts so that you only loose a factor of 2 in the AGD convergence rate.

Conditional Gradients 000	Global Acceleration	Locally Accelerated Conditional Gradients	References 0000

What we will obtain:

Global Acceleration

Locally Accelerated Conditional Gradients

References 0000

Locally Accelerated Conditional Gradients (LaCG)

Algorithm 1 Locally Accelerated Conditional Gradients

1:	1: Initialize $C_0 = S_0$, $x_0 = x_0^{AFW} = x_0^{AGD}$, $H = O\left(\sqrt{\frac{L}{\mu} \log \frac{L}{\mu}}\right)$			
2:	for $t = 1$ to T do			
3:	$x_{t+1}^{\textit{AFW}}, \mathcal{S}_{t+1} \leftarrow \textit{AFW}(x_t^{\textit{AFW}}, \mathcal{S}_t)$	⊳ AFW step		
4:	if Vertex has been added to ${\mathcal S}$ since resta	art then		
5:	if $t = Hn$ for some $n \in \mathbb{N}$ then			
6:	$x_{t+1}^{AGD} \leftarrow \operatorname{argmin}_{x \in \{x_t^{AFW}, x_t^{AGD}\}} f(x)$	⊳ Restart AGD		
7:	$\mathcal{C}_{t+1} \leftarrow Update based on previous lin$	ie.		
8:	else			
9:	$x_{t+1}^{AGD} \leftarrow AGD(x_t^{AGD}, \mathcal{C}_t)$	▷ Run AGD decoupled from AFW		
10:	$\mathcal{C}_{t+1} \leftarrow \mathcal{C}_t$			
11:	end if			
12:	else			
13:	$x_{t+1}^{AGD} \leftarrow AGD(x_t, \mathcal{C}_t)$	▷ Run AGD coupled with AFW		
14:	$\mathcal{C}_{t+1} \leftarrow conv\left(\mathcal{S}_{t+1} ight)$			
15:	end if			
16:	$x_{t+1} \leftarrow \operatorname{argmin}_{x \in \{x_{t+1}^{AFW}, x_{t+1}^{AGD}, x_t\}} f(x)$	▷ Monotonicity		
17:	end for			

Analysis relies on the Approximate Duality Gap technique [DO19] and the AGD algorithm used is a Modified $\mu AGD+$ algorithm [CD018; DCP19].

Theorem (Convergence rate of μ AGD+.)

Let f be L-smooth and μ -strongly convex and let $\{C_i\}_{i=0}^t$ be a sequence of convex subsets of \mathcal{X} such that $C_i \subseteq C_{i-1}$ for all i and $x^* \in \bigcap_{i=0}^t C_i$, then the $\mu AGD+$ achieves an ϵ -optimal solution in a number of iterations T that satisfies:

$$\mathcal{T} = \mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon}
ight)$$

Global Acceleration

Locally Accelerated Conditional Gradients

References 0000

Convergence rate of LaCG

Theorem (Convergence rate of LaCG)

Let f be L-smooth and μ -strongly convex and let r be the critical radius. The number of steps T required to reach an ϵ -optimal solution to the minimization problem satisfies:

$$t = \min\left\{\mathcal{O}\left(\frac{L}{\mu}\left(\frac{D}{\delta}\right)^{2}\log\frac{1}{\epsilon}\right), K + \mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)\right\},$$
where $K = \frac{8L}{\mu}\left(\frac{D}{\delta}\right)^{2}\log\left(\frac{2(f(x_{0}) - f^{*})}{\mu r^{2}}\right).$

Global Acceleration

Locally Accelerated Conditional Gradients

References 0000

Convergence rate of LaCG

Theorem (Convergence rate of LaCG)

Let f be L-smooth and μ -strongly convex and let r be the critical radius. The number of steps T required to reach an ϵ -optimal solution to the minimization problem satisfies:

$$t = \min\left\{\mathcal{O}\left(\frac{L}{\mu}\left(\frac{D}{\delta}\right)^{2}\log\frac{1}{\epsilon}\right), K + \mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)\right\},$$
where $K = \frac{8L}{\mu}\left(\frac{D}{\delta}\right)^{2}\log\left(\frac{2(f(x_{0}) - f^{*})}{\mu r^{2}}\right).$

Global Acceleration

Locally Accelerated Conditional Gradients

References

Computational Results

Despite the faster convergence rate after the burn-in phase, how does LaCG perform with respect to other projection-free algorithms?

Locally Accelerated Conditional Gradients

References

Simplex in \mathbb{R}^{1500} with $L/\mu = 1000$

Figure: Primal gap vs. iteration Figure: Primal gap vs. time When close enough to x^* (after burn-in phase), there is a significant speedup in the convergence rate.

Conditional Gradients	Global Acceleration	Locally Accelerated Conditional Gradients	References
		000000000000	

Birkhoff polytope in $\mathbb{R}^{400\times400}$ with $L/\mu = 100$

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

500

t[s]

750

1000

Conditional Gradients	Global Acceleration	Locally Accelerated Conditional Gradients	References
		000000000000	

Structured Regression over MIPLIB Polytope (ran14x18-disj-8)

Figure: Primal gap vs. iteration

 10^{3} 10^{1} 10^{-1} 0 1000 2000 3000 4000 t[s]

Locally Accelerated Conditional Gradients

References

Thank you for your attention.

Conditional	Gradients

Locally Accelerated Conditional Gradients

References 0000

References I

- [FW56] Marguerite Frank and Philip Wolfe. "An algorithm for quadratic programming". In: Naval research logistics quarterly 3.1-2 (1956), pp. 95–110.
- [Pol74] Boris Teodorovich Polyak. "Minimization methods in the presence of constraints". In: Itogi Nauki i Tekhniki. Seriya" Matematicheskii Analiz" 12 (1974), pp. 147–197.
- [Wol70] Philip Wolfe. "Convergence theory in nonlinear programming". In: Integer and nonlinear programming (1970), pp. 1–36.
- [GM86] Jacques Guélat and Patrice Marcotte. "Some comments on Wolfe's 'away step'". In: Mathematical Programming 35.1 (1986), pp. 110–119.

Conditional	Gradients

Locally Accelerated Conditional Gradients

References 0000

References II

- [LJ15] Simon Lacoste-Julien and Martin Jaggi. "On the Global Linear Convergence of Frank-Wolfe Optimization Variants". In: Advances in Neural Information Processing Systems 28. 2015, pp. 496–504.
- [NY83] Arkadii Semenovich Nemirovsky and David Borisovich Yudin.
 "Problem complexity and method efficiency in optimization".
 In: Wiley-Interscience Series in Discrete Mathematics 15 (1983).
- [Nes83] Y Nesterov. "A method of solving a convex programming problem with convergence rate $O(\frac{1}{k^2})$ ". In: Soviet Math. Dokl. Vol. 27. 1983.
- [Jag13] Martin Jaggi. "Revisiting Frank-Wolfe: Projection-free sparse convex optimization.". In: *ICML* (1). 2013, pp. 427–435.

Conditional	Gradients

Locally Accelerated Conditional Gradients

References 0000

References III

- [Lan13] G Lan. "The complexity of large-scale convex programming under a linear optimization oracle". In: Technical report, Department of Industrial and Systems Engineering, University of Florida. (2013).
- [DO19] Jelena Diakonikolas and Lorenzo Orecchia. "The approximate duality gap technique: A unified theory of first-order methods". In: SIAM Journal on Optimization 29.1 (2019), pp. 660–689.
- [CD018] Michael B Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. "On acceleration with noise-corrupted gradients". In: 35nd International Conference on Machine Learning, ICML 2018 (2018).
- [DCP19] Jelena Diakonikolas, Alejandro Carderera, and Sebastian Pokutta. "Locally Accelerated Conditional Gradients". In: *arXiv preprint arXiv:1906.07867* (2019).

Global Acceleration

Locally Accelerated Conditional Gradients

References 0000

References IV

- [LZ16] Guanghui Lan and Yi Zhou. "Conditional gradient sliding for convex optimization". In: SIAM Journal on Optimization 26.2 (2016), pp. 1379–1409.
- [LMH15] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. "A universal catalyst for first-order optimization". In: Advances in neural information processing systems. 2015, pp. 3384–3392.

Global Acceleration

Locally Accelerated Conditional Gradients

References •000

Lower bound on number of iterations.

Can CG achieve these convergence rates globally?

Example ([Lan13; Jag13] $f(x) = ||x||^2$ over unit simplex in \mathbb{R}^n .)

We know the optimal solution is given by $x^* = 1/n$. CG can incorporate at most one vertex in each iteration, if we start from a vertex x_0 , in iteration t < n we have that:

$$f(x_t)-f(x^*)\geq \frac{1}{t}-\frac{1}{n}$$

Conditional Gradients	Global Acceleration	Locally Accelerated Conditional Gradients	References
			0000

Considering iterations such that $t \leq \lfloor n/2 \rfloor$ and rearranging into a linear convergence contraction we have:

$$\mathcal{T} = \Omega\left(rac{1}{r}\lograc{1}{\epsilon}
ight),$$

where $r \leq 2 \frac{\log 2t}{2t}$.

Conditional Gradients	Global Acceleration	Locally Accelerated Conditional Gradients	References
			0000

Considering iterations such that $t \leq \lfloor n/2 \rfloor$ and rearranging into a linear convergence contraction we have:

$$T = \Omega\left(rac{1}{r}\lograc{1}{\epsilon}
ight),$$

where $r \leq 2 \frac{\log 2t}{2t}$.

Convergence rate of the CG variants for this problem instance: $r = \frac{1}{4t}$.

At best a global logarithmic improvement in the convergence rate, therefore **global acceleration in Nesterov's sense is not possible**.

Global Acceleration

Locally Accelerated Conditional Gradients

References 00●0

Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov's Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [LZ16].

Global Acceleration

Locally Accelerated Conditional Gradients

References 0000

Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov's Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [LZ16].

Catalyst Augmented AFW: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [LMH15].

Global Acceleration

Locally Accelerated Conditional Gradients

References

Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov's Accelerated Gradient Descent, use CG to solve the projection subproblems approximately [LZ16].

Catalyst Augmented AFW: Run Accelerated Proximal Method and solve proximal problems with a linearly convergent CG [LMH15].

Complexity for *L*-smooth μ -strongly convex *f*.

Algorithm	LO Calls	FO Calls
CGS	$\mathcal{O}\left(\frac{LD^2}{\epsilon}\right)$	$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log \frac{1}{\epsilon} ight)$
Catalyst	$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}}\left(\frac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$	$\mathcal{O}\left(\sqrt{\frac{L-\mu}{\mu}}\left(\frac{D}{\delta} ight)^2\lograc{1}{\epsilon} ight)$

Global Acceleration

Locally Accelerated Conditional Gradients

References 000●

Additional Examples

Congestion Balancing in Traffic Networks

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time