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Goal is L-smooth µ-strongly convex optimization over polytope X .

min
x∈X

f (x)

Main ingredients:
First-order (FO) oracle. Given x ∈ X and a differentiable convex
function f : Rn → R, return:

∇f (x) ∈ Rn and f (x) ∈ R

Linear optimization (LO) oracle. Given v ∈ Rn, return:

argmin
x∈X

〈v , x〉

Focus on Conditional Gradients/Frank-Wolfe algorithm [FW56;
Pol74] and its variants such as the Away-step Conditional
Gradients/Frank-Wolfe (AFW) algorithm [Wol70; GM86].
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Away-step Conditional Gradients (AFW)

Choose direction that guarantees more progress:
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Figure: Away-step CG (AFW)

1. Frank-Wolfe direction:

argmin
y∈X

〈∇f (x), y〉 − x .

2. Away-step direction:

x − argmax
y∈S

〈∇f (x), y〉 ,

where S is the active set of x .
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Convergence rate for L-smooth µ-strongly convex f

Theorem (Convergence rate of AFW)

[LJ15] Suppose that f is L-smooth µ-strongly convex over a
polytope X , the number of steps T required to reach an ε-optimal
solution to the minimization problem satisfies,

T = O
(
L

µ

(
D

δ

)2

log
1

ε

)
,

where D and δ are the diameter and pyramidal width of X .
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CG Global Acceleration

However, we know that optimal methods for this class of functions

achieve an ε solution in T = O
(√

L
µ log 1

ε

)
first-order calls [NY83;

Nes83].

Can CG achieve these convergence rates globally?

Dimension independent global acceleration
is not possible [Jag13; Lan13].
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Objectives:

Dimension independent global acceleration.
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Objectives:

Dimension independent global acceleration.

Dimension independent local acceleration.



Conditional Gradients Global Acceleration Locally Accelerated Conditional Gradients References

Locally Accelerated Conditional Gradients (LaCG)

What do we mean by local acceleration?

X x∗

x0

Accelerated

Unaccelerated

After a constant number of iterations that does not depend on ε,
accelerate the convergence.
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Let St denote the CG active set at iteration t.

What we know:
∃r > 0 s.t. if ‖x∗ − xT‖ ≤ r ⇒ x∗ ∈ conv (ST ).

X x∗
r

Naive Idea: Run an accelerated first-order method (AGD) on
conv (ST ).
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We would want the following:

X x∗

AGD

x0 AFW

Problem: The value of r is not known, we don’t know when to
switch from AFW to AGD.

Challenge: Create algorithm that accelerates without
knowledge of r .
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Run AFW and restart AGD by running it over a new conv (St)
every H iterations.

X x∗
r

x0

Trajectory AFW iterates

Restart

Every H iterations restart AGD and run it over conv (St).

Have AGD and AFW compete for progress at each iteration

between restarts.

Space out restarts so that you only loose a factor of 2 in the AGD

convergence rate.
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What we will obtain:

X x∗
r

x0

AFW-driven convergence

AGD-driven convergence

Restart
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Locally Accelerated Conditional Gradients (LaCG)

Algorithm 1 Locally Accelerated Conditional Gradients

1: Initialize C0 = S0, x0 = xAFW0 = xAGD0 , H = O
(√

L
µ
log L

µ

)
2: for t = 1 to T do
3: xAFWt+1 ,St+1 ← AFW (xAFWt ,St) . AFW step

4: if Vertex has been added to S since restart then
5: if t = Hn for some n ∈ N then
6: xAGDt+1 ← argminx∈{xAFWt ,xAGDt } f (x) . Restart AGD

7: Ct+1 ← Update based on previous line.
8: else
9: xAGDt+1 ← AGD(xAGDt , Ct) . Run AGD decoupled from AFW

10: Ct+1 ← Ct
11: end if
12: else
13: xAGDt+1 ← AGD(xt , Ct) . Run AGD coupled with AFW

14: Ct+1 ← conv (St+1)
15: end if
16: xt+1 ← argminx∈{xAFWt+1 ,xAGDt+1 ,xt}

f (x) . Monotonicity

17: end for
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Analysis relies on the Approximate Duality Gap technique [DO19]
and the AGD algorithm used is a Modified µAGD+ algorithm
[CDO18; DCP19].

Theorem (Convergence rate of µAGD+.)

Let f be L-smooth and µ-strongly convex and let {Ci}ti=0 be a
sequence of convex subsets of X such that Ci ⊆ Ci−1 for all i and
x∗ ∈ ∩ti=0Ci , then the µAGD+ achieves an ε-optimal solution in a
number of iterations T that satisfies:

T = O
(√

L

µ
log

1

ε

)
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Convergence rate of LaCG

Theorem (Convergence rate of LaCG)

Let f be L-smooth and µ-strongly convex and let r be the critical
radius. The number of steps T required to reach an ε-optimal
solution to the minimization problem satisfies:

t = min

{
O
(
L

µ

(
D

δ

)2

log
1

ε

)
,K +O

(√
L

µ
log

1

ε

)}
,

where K = 8L
µ

(
D
δ

)2
log
(
2(f (x0)−f ∗)

µr2

)
.

X x∗
r

x0

AFW-driven convergence

AGD-driven convergence

Restart
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Computational Results

Despite the faster convergence rate after the burn-in phase,
how does LaCG perform with respect to other projection-free
algorithms?
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Simplex in R1500 with L/µ = 1000
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Figure: Primal gap vs. iteration
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Figure: Primal gap vs. time

When close enough to x∗ (after burn-in phase), there is a
significant speedup in the convergence rate.
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Birkhoff polytope in R400x400 with L/µ = 100
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Figure: Primal gap vs. iteration
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Structured Regression over MIPLIB Polytope
(ran14x18-disj-8)
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Figure: Primal gap vs. time
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Thank you
for your attention.
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Lower bound on number of iterations.

Can CG achieve these convergence rates globally?

Example ([Lan13; Jag13] f (x) = ‖x‖2 over unit simplex in Rn.)

We know the optimal solution is given by x∗ = 1/n. CG can
incorporate at most one vertex in each iteration, if we start from a
vertex x0, in iteration t < n we have that:

f (xt)− f (x∗) ≥ 1

t
− 1

n
.



Conditional Gradients Global Acceleration Locally Accelerated Conditional Gradients References

Considering iterations such that t ≤ bn/2c and rearranging into a
linear convergence contraction we have:

T = Ω

(
1

r
log

1

ε

)
,

where r ≤ 2 log 2t
2t .

Convergence rate of the CG variants for this problem
instance: r = 1

4t .

At best a global logarithmic improvement in the convergence rate,
therefore global acceleration in Nesterov’s sense is not
possible.
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Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov’s
Accelerated Gradient Descent, use CG to solve the projection
subproblems approximately [LZ16].

Catalyst Augmented AFW: Run Accelerated Proximal Method
and solve proximal problems with a linearly convergent CG
[LMH15].

Complexity for L-smooth µ-strongly convex f .

Algorithm LO Calls FO Calls

CGS O
(
LD2

ε

)
O
(√

L
µ log 1

ε

)
Catalyst O

(√
L−µ
µ

(
D
δ

)2
log 1

ε

)
O
(√

L−µ
µ

(
D
δ

)2
log 1

ε

)
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Additional Examples

Congestion Balancing in Traffic Networks
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Figure: Primal gap vs. iteration
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