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Goal is L-smooth p-strongly convex optimization over polytope X.
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Main ingredients:
First-order (FO) oracle. Given x € X’ and a differentiable convex
function f : R" — R, return:

Vf(x) € R" and f(x) € R
Linear optimization (LO) oracle. Given v € R", return:

argmin (v, x)
xeX
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Goal is L-smooth p-strongly convex optimization over polytope X.

min f(x)

Main ingredients:
First-order (FO) oracle. Given x € X’ and a differentiable convex
function f : R" — R, return:

Vf(x) € R" and f(x) € R
Linear optimization (LO) oracle. Given v € R", return:

argmin (v, x)
xeX
Focus on Conditional Gradients/Frank-Wolfe algorithm [FW56;

Pol74] and its variants such as the Away-step Conditional
Gradients/Frank-Wolfe (AFW) algorithm [Wol70; GM86].
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Away-step Conditional Gradients (AFW)

Choose direction that guarantees more progress:

X0

— 1. Frank-Wolfe direction:

argmin (Vf(x), y) — x.
yeX

2. Away-step direction:

x — argmax (Vf(x),y),
yes

\

Figure: Away-step CG (AFW)

\ * [ where S is the active set of x.
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Convergence rate for L-smooth u-strongly convex f

Theorem (Convergence rate of AFW)

[LJ15] Suppose that f is L-smooth u-strongly convex over a
polytope X, the number of steps T required to reach an e-optimal
solution to the minimization problem satisfies,

2
T=0 (L <D> Iogl),
TR €

where D and 0 are the diameter and pyramidal width of X .
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CG Global Acceleration

However, we know that optimal methods for this class of functions
achieve an e solution in T = O <\/£Iog %) first-order calls [NY83;
Nes83].

Can CG achieve these convergence rates globally?
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CG Global Acceleration

However, we know that optimal methods for this class of functions
achieve an e solution in T = O <\/£Iog %) first-order calls [NY83;
Nes83].

Can CG achieve these convergence rates globally?

Dimension independent global acceleration
is not possible [Jag13; Lan13].
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Objectives:

o Dimension independent global acceleration.
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Objectives:
. Di o ind I lobal leration.

o Dimension independent local acceleration.
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Locally Accelerated Conditional Gradients (LaCG)

What do we mean by local acceleration?

O

L0y Unaccelerated

After a constant number of iterations that does not depend on ¢,
accelerate the convergence.
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Let S; denote the CG active set at iteration t.

What we know:
dr > 0 s.t. if ||x* — x7|| < r = x* € conv(ST).

X r*

Naive Idea: Run an accelerated first-order method (AGD) on
conv (S1).
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We would want the following:
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We would want the following:

Problem: The value of r is not known, we don't know when to
switch from AFW to AGD.
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We would want the following:

Problem: The value of r is not known, we don't know when to
switch from AFW to AGD.

Challenge: Create algorithm that accelerates without
knowledge of r.
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Run AFW and restart AGD by running it over a new conv (S;)
every H iterations.

~ Trajectory AFW iterates
° Restart
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every H iterations.

~ Trajectory AFW iterates
° Restart

@ Every H iterations restart AGD and run it over conv (S;).
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Run AFW and restart AGD by running it over a new conv (S;)
every H iterations.

~ Trajectory AFW iterates
° Restart

@ Every H iterations restart AGD and run it over conv (S;).

@ Have AGD and AFW compete for progress at each iteration
between restarts.
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Run AFW and restart AGD by running it over a new conv (S;)
every H iterations.

~ Trajectory AFW iterates
° Restart

@ Every H iterations restart AGD and run it over conv (S;).

@ Have AGD and AFW compete for progress at each iteration
between restarts.

@ Space out restarts so that you only loose a factor of 2 in the AGD

convergence rate.
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What we will obtain:

Zo

~ AFW-driven convergence

. Restart
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Locally Accelerated Conditional Gradients (LaCG)

Algorithm 1 Locally Accelerated Conditional Gradients

1 Initialize Co = So, xp = x{FW = XL, H =0 (\fbg )

2: for t_lto T do

3 t+1 W Sl + AFW(XAFW St) > AFW step
4: if Vertex has been added to S since restart then

5 if t = Hn for some n € N then

6 xAA%P « argmin__ (W aeny f(x) > Restart AGD
7 Ct+1 + Update based on previous line.

8: else

9: xfA%P + AGD(x{\°P, C:) > Run AGD decoupled from AFW
10: Ct+1 = Ct

11: end if

12: else

13: tAle < AGD(x¢,Ct) > Run AGD coupled with AFW
14: Ciy1 < conv (Sty1)

15: end if

16 Xet1 4 argmin, o amw acp f(x) > Monotonicity

17: end for
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Analysis relies on the Approximate Duality Gap technique [DO19]
and the AGD algorithm used is a Modified pnAGD+ algorithm
[CDO18; DCP19].

Theorem (Convergence rate of uAGD+.)

Let f be L-smooth and i-strongly convex and let {C;}f_, be a
sequence of convex subsets of X such that C; C C;_1 for all i and
x* € Ni_yCj, then the nAGD+ achieves an e-optimal solution in a
number of iterations T that satisfies:

el
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Convergence rate of LaCG

Theorem (Convergence rate of LaCG)

Let f be L-smooth and pu-strongly convex and let r be the critical
radius. The number of steps T required to reach an e-optimal
solution to the minimization problem satisfies:

o2 ol

where K = %L (%)2 log (72(“)2,)24*)).
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Convergence rate of LaCG

Theorem (Convergence rate of LaCG)

Let f be L-smooth and pu-strongly convex and let r be the critical
radius. The number of steps T required to reach an e-optimal
solution to the minimization problem satisfies:

o2 ol

where K = %L (%)2 log (72(“)2,)24*)).

~" AFW-driven convergence

. Restart
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Computational Results

Despite the faster convergence rate after the burn-in phase,
how does LaCG perform with respect to other projection-free
algorithms?
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Simplex in R with L/; = 1000
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Figure: Primal gap vs. iteration Figure: Primal gap vs. time

When close enough to x* (after burn-in phase), there is a
significant speedup in the convergence rate.
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Birkhoff polytope in R*09x400 with [/; = 100
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Figure: Primal gap vs. iteration Figure: Primal gap vs. time
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Structured Regression over MIPLIB Polytope
(ran14x18-disj-8)
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Figure: Primal gap vs. iteration Figure: Primal gap vs. time
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Thank you
for your attention.
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Lower bound on number of iterations.

Can CG achieve these convergence rates globally?

Example ([Lan13; Jagl3] f(x) = ||x||?> over unit simplex in R".)

We know the optimal solution is given by x* = 1/n. CG can
incorporate at most one vertex in each iteration, if we start from a
vertex xg, in iteration t < n we have that:

1
o

L1
o) = Fx) 2
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Considering iterations such that t < [n/2] and rearranging into a
linear convergence contraction we have:

T:Q<1Iog1>,
r €

log 2t
o

where r <25
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Considering iterations such that t < [n/2] and rearranging into a
linear convergence contraction we have:

T:Q<1Iog1>,
r €

Convergence rate of the CG variants for this problem

. R _ 1
instance: r = a5

where r < 2|°§tzt.

At best a global logarithmic improvement in the convergence rate,
therefore global acceleration in Nesterov’s sense is not
possible.
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Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov's
Accelerated Gradient Descent, use CG to solve the projection
subproblems approximately [LZ16].
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Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov's
Accelerated Gradient Descent, use CG to solve the projection
subproblems approximately [LZ16].

Catalyst Augmented AFW: Run Accelerated Proximal Method
and solve proximal problems with a linearly convergent CG
[LMH15].
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Other Acceleration Approaches

Conditional Gradient Sliding (CGS): Run Nesterov's
Accelerated Gradient Descent, use CG to solve the projection
subproblems approximately [LZ16].

Catalyst Augmented AFW: Run Accelerated Proximal Method
and solve proximal problems with a linearly convergent CG
[LMH15].

Complexity for L-smooth p-strongly convex f.
Algorithm LO Calls FO Calls

CGS o () 0 (\/Log?)
Catalyst O(\/E(%) Iog%) O(ﬁ( ) log = )
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Additional Examples

Congestion Balancing in Traffic Networks
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Figure: Primal gap vs. iteration Figure: Primal gap vs. time
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