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Goal is smooth strongly-convex optimization.
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Goal is smooth strongly-convex optimization.

min f(x)

Main ingredients:
First-order (FO) oracle. Given x € X return:

Vf(x) € R" and f(x) € R
Linear optimization (LO) oracle. Given v € R", return:

argmin (v, x)
xeX
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Focus of our work is on the Conditional Gradients algorithm (CG)
[1], also known as the Frank-Wolfe algorithm (FW) [2] and its
variants.
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Focus of our work is on the Conditional Gradients algorithm (CG)
[1], also known as the Frank-Wolfe algorithm (FW) [2] and its
variants.

Theorem (Convergence rate of CG variants.)

[3] For the problem at hand the number of steps T required to
reach an e-optimal solution to the minimization problem verifies,

L (D\? 1
Tz(’)( () Iog),
TR €
where D and 0 are the diameter and pyramidal width of polytope
X.
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CG Global Acceleration.

However, we know that optimal projected methods for this class of
functions achieve an € solution in T = O (\/Elog %) first-order
calls [4, 5].

Can CG achieve these convergence rates globally?
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CG Global Acceleration.

However, we know that optimal projected methods for this class of
functions achieve an € solution in T = O (\/Elog %) first-order
calls [4, 5].

Can CG achieve these convergence rates globally?

No: global acceleration in Nesterov’s sense is not possible.
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Objectives:

o Dimension independent global acceleration.
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Objectives:
. Di o ind I lobal leration.

e Dimension independent local acceleration.
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Locally Accelerated Conditional Gradients (LaCG).

What do we mean by local acceleration?

After a constant number of iterations, accelerate the convergence.
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LocaIIy Accelerated Conditional Gradients (LaCG).

The key ingredients is a Modified tAGD algorithm [6].

Theorem (Convergence rate of pAGD.)

Let {Ci}!_, be a sequence of convex subsets of X such that
Ci CCj_q for all i and x* € NI_,C;, then the pAGD achieves an

e-optimal solution in:
L 1
T=0 <\/7|og )
w €

How do we build {C;}{_, in an efficient way?
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Naively, what we would like:
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Naively, what we would like:

But since the value of r is not known, we don’t know when to
switch from CG to pAGD.
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Main ideas of LaCG:
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Main ideas of LaCG:

@ At each iteration perform a CG variant step and a 4AGD step

. AGD
over Cyy1 and select xg1 = argmin{x"%, x/77" }
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Main ideas of LaCG:

@ At each iteration perform a CG variant step and a 4AGD step

. AGD
over Cty1 and select x¢11 = argmm{xtcfl,xfﬂc }

CG Step
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Main ideas of LaCG:

@ At each iteration perform a CG variant step and a 4AGD step

. AGD
over Cyy1 and select xg1 = argmin{x"%, x/77" }

CG Step
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over Cyy1 and select x¢1 = argmin{x"%, x/77 }

CG Step
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over Cyy1 and select x¢1 = argmin{x"%, x/77 }

CG Step
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Main ideas of LaCG:

@ At each iteration perform a CG variant step and a 4AGD step

. AGD
over Cyy1 and select x¢1 = argmin{x"%, x/77 }

CG Step
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. AGD
over Cyy1 and select x¢1 = argmin{x"%, x/77 }

wAGD Step




litional Gradients al Acceleration Locally Accelerated Conditional Gradients

0000000000000 0000

Main ideas of LaCG:

@ At each iteration perform a CG variant step and a 4AGD step

. AGD
over Cyy1 and select x¢1 = argmin{x"%, x/77 }

wAGD Step




litional Gradients al Acceleration Locally Accelerated Conditional Gradients

000000000e00000000

Main ideas of LaCG:

@ At each iteration perform a CG variant step and a 4AGD step

. AGD
over Cyy1 and select x¢1 = argmin{x"%, x/77 }

wAGD Step
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Main ideas of LaCG:

@ Every H iterations restart: use S; to update C; if a vertex was
added to S; since the last update.
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Main ideas of LaCG:

@ Every H iterations restart: use S; to update C; if a vertex was
added to S; since the last update.

Restart
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Main ideas of LaCG:

@ Every H iterations restart: use S; to update C; if a vertex was
added to S; since the last update.

Restart

caG _ HAGD
TiyH+1 =

g1 = Ciomit
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Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and pu-strongly convex and let r be the critical
radius, for:

9 ol )

and K = 8L (D)?|og (%) then f(x) — F(x*) < e
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Computational Results.

Despite the faster convergence rate after the burn-in phase,
how does LaCG perform with respect to other projection-free
algorithms?
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Simplex in R with L/; = 1000.
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Figure: Primal gap vs. iteration Figure: Primal gap vs. time

When close enough to xx (after burn-in phase), there is a
significant speedup in the convergence rate.
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Birkhoff polytope in R*09x400 with [ /4 = 100.
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Figure: Primal gap vs. iteration Figure: Primal gap vs. time
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Structured Regression over MIPLIB Polytope
(ran14x18-disj-8).
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Figure: Primal gap vs. iteration Figure: Primal gap vs. time
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Thank you
for your attention.
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