Locally Accelerated Conditional Gradients

Alejandro Carderera

Joint work with J. Diakonikolas and S. Pokutta
Georgia Institute of Technology

alejandro.carderera@gatech.edu

November 20th, 2019
Goal is smooth strongly-convex optimization.

\[
\min_{x \in X} f(x)
\]
Goal is smooth strongly-convex optimization.

\[
\min_{x \in \mathcal{X}} f(x)
\]

Main ingredients:

First-order (FO) oracle. Given \(x \in \mathcal{X} \) return:

\[
\nabla f(x) \in \mathbb{R}^n \text{ and } f(x) \in \mathbb{R}
\]

Linear optimization (LO) oracle. Given \(v \in \mathbb{R}^n \), return:

\[
\arg\min_{x \in \mathcal{X}} \langle v, x \rangle
\]
Focus of our work is on the *Conditional Gradients* algorithm (CG) [1], also known as the *Frank-Wolfe* algorithm (FW) [2] and its variants.
Focus of our work is on the *Conditional Gradients* algorithm (CG) [1], also known as the *Frank-Wolfe* algorithm (FW) [2] and its variants.

Theorem (Convergence rate of CG variants.)

[3] For the problem at hand the number of steps T required to reach an ϵ-optimal solution to the minimization problem verifies,

$$T = O \left(\frac{L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \frac{1}{\epsilon} \right),$$

where D and δ are the diameter and pyramidal width of polytope \mathcal{X}.
However, we know that optimal projected methods for this class of functions achieve an ϵ solution in $T = O \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right)$ first-order calls [4, 5].

Can CG achieve these convergence rates **globally**?
CG Global Acceleration.

However, we know that optimal projected methods for this class of functions achieve an ϵ solution in $T = \mathcal{O} \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right)$ first-order calls [4, 5].

Can CG achieve these convergence rates **globally**?

No: global acceleration in Nesterov’s sense is not possible.
Objectives:

- Dimension independent global acceleration.
Objectives:

- Dimension independent global acceleration.
- Dimension independent local acceleration.
Locally Accelerated Conditional Gradients (LaCG).

What do we mean by **local acceleration**?

After a constant number of iterations, accelerate the convergence.
The key ingredients is a Modified μAGD algorithm [6].

Theorem (Convergence rate of μAGD.)

Let $\{C_i\}_{i=0}^t$ be a sequence of convex subsets of \mathcal{X} such that $C_i \subseteq C_{i-1}$ for all i and $x^* \in \bigcap_{i=0}^t C_i$, then the μAGD achieves an ϵ-optimal solution in:

$$T = O \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right)$$

How do we build $\{C_i\}_{i=0}^t$ in an efficient way?
Naively, what we would like:
Naively, what we would like:

But since the value of r is not known, we don’t know when to switch from CG to μAGD.
Main ideas of LaCG:

At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \arg\min\{x_{CG_{t+1}}, x_{\mu AGD_{t+1}}\}$.

CG Step

$X_{FW_{t}}$ $X_{\mu AGD_{t}}$ x^{*} C_{t} S_{t}
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \arg\min\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over \mathcal{C}_{t+1} and select $x_{t+1} = \arg\min\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

CG Step
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \text{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

CG Step
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \arg\min\{x_{CGt+1}, x_{\mu AGD t+1}\}$.

CG Step

![Diagram showing the CG Step process]
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \text{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

CG Step
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \arg\min\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

CG Step
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \arg\min\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

μAGD Step
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \text{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

μAGD Step

![Diagram](image.png)
Main ideas of LaCG:

- At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select $x_{t+1} = \arg\min\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

μAGD Step
Main ideas of LaCG:

- Every H iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.
Main ideas of LaCG:

- Every H iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.

Restart
Main ideas of LaCG:

- Every H iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.
Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and μ-strongly convex and let r be the critical radius, for:

$$
 t = \min \left\{ O \left(\frac{L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \frac{1}{\epsilon} \right), K + O \left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon} \right) \right\}
$$

and $K = \frac{8L}{\mu} \left(\frac{D}{\delta} \right)^2 \log \left(\frac{2(f(x_0) - f^*)}{\mu r^2} \right)$, then $f(x_t) - f(x^*) \leq \epsilon$.
Despite the faster convergence rate after the burn-in phase, how does LaCG perform with respect to other projection-free algorithms?
Simplex in \mathbb{R}^{1500} with $L/\mu = 1000$.

Figure: Primal gap vs. iteration

When close enough to x^* (after burn-in phase), there is a significant speedup in the convergence rate.

Figure: Primal gap vs. time
Birkhoff polytope in $\mathbb{R}^{400 \times 400}$ with $L/\mu = 100$.

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time
Structured Regression over MIPLIB Polytope
(ran14x18-disj-8).

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time
Thank you for your attention.
References I

