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Goal is smooth strongly-convex optimization.

min
x∈X

f (x)

Main ingredients:
First-order (FO) oracle. Given x ∈ X return:

∇f (x) ∈ Rn and f (x) ∈ R

Linear optimization (LO) oracle. Given v ∈ Rn, return:

argmin
x∈X

〈v , x〉
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Focus of our work is on the Conditional Gradients algorithm (CG)
[1], also known as the Frank-Wolfe algorithm (FW) [2] and its
variants.

Theorem (Convergence rate of CG variants.)

[3] For the problem at hand the number of steps T required to
reach an ε-optimal solution to the minimization problem verifies,

T = O

(
L

µ

(
D

δ

)2

log
1

ε

)
,

where D and δ are the diameter and pyramidal width of polytope
X .
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CG Global Acceleration.

However, we know that optimal projected methods for this class of

functions achieve an ε solution in T = O
(√

L
µ log 1

ε

)
first-order

calls [4, 5].

Can CG achieve these convergence rates globally?

No: global acceleration in Nesterov’s sense is not possible.



Conditional Gradients Global Acceleration Locally Accelerated Conditional Gradients References

CG Global Acceleration.

However, we know that optimal projected methods for this class of

functions achieve an ε solution in T = O
(√

L
µ log 1

ε

)
first-order

calls [4, 5].

Can CG achieve these convergence rates globally?

No: global acceleration in Nesterov’s sense is not possible.



Conditional Gradients Global Acceleration Locally Accelerated Conditional Gradients References

Objectives:

Dimension independent global acceleration.
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Objectives:

Dimension independent global acceleration.

Dimension independent local acceleration.
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Locally Accelerated Conditional Gradients (LaCG).

What do we mean by local acceleration?

X x∗

x0

Accelerated

Unaccelerated

After a constant number of iterations, accelerate the convergence.
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Locally Accelerated Conditional Gradients (LaCG).

The key ingredients is a Modified µAGD algorithm [6].

Theorem (Convergence rate of µAGD.)

Let {Ci}ti=0 be a sequence of convex subsets of X such that
Ci ⊆ Ci−1 for all i and x∗ ∈ ∩ti=0Ci , then the µAGD achieves an
ε-optimal solution in:

T = O

(√
L

µ
log

1

ε

)

How do we build {Ci}ti=0 in an efficient way?
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Naively, what we would like:

X x∗

CG
µAGD

x0

But since the value of r is not known, we don’t know when to
switch from CG to µAGD.
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Main ideas of LaCG:

At each iteration perform a CG variant step and a µAGD step
over Ct+1 and select xt+1 = argmin{xCGt+1, x

µAGD
t+1 }.

CG Step

X

xFWt
xµAGDt

x∗

CtSt
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Main ideas of LaCG:

Every H iterations restart: use St to update Ct if a vertex was
added to St since the last update.

Restart

X x∗

Ct+H

St+H

xCGt+H

xµAGDt+H
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Main ideas of LaCG:

Every H iterations restart: use St to update Ct if a vertex was
added to St since the last update.

Restart

X x∗
xCGt+H+1 = xµAGDt+H+1

Ct+H+1St+H+1 =
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Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and µ-strongly convex and let r be the critical
radius, for:

t = min

{
O

(
L

µ

(
D

δ

)2

log
1

ε

)
,K +O

(√
L

µ
log

1

ε

)}

and K = 8L
µ

(
D
δ

)2
log
(
2(f (x0)−f ∗)

µr2

)
, then f (xt)− f (x∗) ≤ ε
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Computational Results.

Despite the faster convergence rate after the burn-in phase,
how does LaCG perform with respect to other projection-free
algorithms?
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Simplex in R1500 with L/µ = 1000.
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Figure: Primal gap vs. iteration
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Figure: Primal gap vs. time

When close enough to x∗ (after burn-in phase), there is a
significant speedup in the convergence rate.
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Birkhoff polytope in R400x400 with L/µ = 100.
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Structured Regression over MIPLIB Polytope
(ran14x18-disj-8).

100 101 102 103 104

k

10 1

101

103

f(x
k)

f*

AFW
PFW
LaCG-AFW
LaCG-PFW

Figure: Primal gap vs. iteration

� ���� ���� ���� ����

����

�� �

���

���

Figure: Primal gap vs. time
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Thank you
for your attention.
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