Locally Accelerated Conditional Gradients

Alejandro Carderera

Joint work with J. Diakonikolas and S. Pokutta Georgia Institute of Technology

alejandro.carderera@gatech.edu

November 20th, 2019

H. Milton Stewart School of Industrial and Engineering Systems

Goal is smooth strongly-convex optimization.

 $\min_{x\in\mathcal{X}}f(x)$

Goal is smooth strongly-convex optimization.

 $\min_{x\in\mathcal{X}}f(x)$

Main ingredients: **First-order (FO) oracle.** Given $x \in \mathcal{X}$ return:

 $\nabla f(x) \in \mathbb{R}^n$ and $f(x) \in \mathbb{R}$

Linear optimization (LO) oracle. Given $v \in \mathbb{R}^n$, return:

 $\underset{x \in \mathcal{X}}{\operatorname{argmin}} \langle v, x \rangle$

Conditional Gradients ○●	Global Acceleration	Locally Accelerated Conditional Gradients	References

Focus of our work is on the *Conditional Gradients* algorithm (CG) [1], also known as the *Frank-Wolfe* algorithm (FW) [2] and its variants.

Focus of our work is on the *Conditional Gradients* algorithm (CG) [1], also known as the *Frank-Wolfe* algorithm (FW) [2] and its variants.

Theorem (Convergence rate of CG variants.)

[3] For the problem at hand the number of steps T required to reach an ϵ -optimal solution to the minimization problem verifies,

$$T = \mathcal{O}\left(rac{L}{\mu}\left(rac{D}{\delta}
ight)^2\lograc{1}{\epsilon}
ight),$$

where D and δ are the diameter and pyramidal width of polytope $\mathcal{X}.$

Global Acceleration

Locally Accelerated Conditional Gradients

References

CG Global Acceleration.

However, we know that optimal projected methods for this class of functions achieve an ϵ solution in $T = \mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$ first-order calls [4, 5].

Can CG achieve these convergence rates globally?

Global Acceleration

Locally Accelerated Conditional Gradients

References

CG Global Acceleration.

However, we know that optimal projected methods for this class of functions achieve an ϵ solution in $T = \mathcal{O}\left(\sqrt{\frac{L}{\mu}} \log \frac{1}{\epsilon}\right)$ first-order calls [4, 5].

Can CG achieve these convergence rates globally?

No: global acceleration in Nesterov's sense is not possible.

Conditional Gradients	Global Acceleration	Locally Accelerated Conditional Gradients	References
	000		

Objectives:

• Dimension independent global acceleration.

Conditional Gradients	Global Acceleration	Locally Accelerated Conditional Gradients	References
00	000		

Objectives:

- Dimension independent global acceleration.
- Dimension independent local acceleration.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Locally Accelerated Conditional Gradients (LaCG).

What do we mean by local acceleration?

After a constant number of iterations, accelerate the convergence.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Locally Accelerated Conditional Gradients (LaCG).

The key ingredients is a *Modified* μAGD algorithm [6].

Theorem (Convergence rate of μ AGD.)

Let $\{C_i\}_{i=0}^t$ be a sequence of convex subsets of \mathcal{X} such that $C_i \subseteq C_{i-1}$ for all i and $x^* \in \bigcap_{i=0}^t C_i$, then the μAGD achieves an ϵ -optimal solution in:

$$\mathcal{T} = \mathcal{O}\left(\sqrt{rac{L}{\mu}}\lograc{1}{\epsilon}
ight)$$

How do we build $\{C_i\}_{i=0}^t$ in an efficient way?

Naively, what we would like:

Naively, what we would like:

But since the value of r is not known, we don't know when to switch from CG to μ AGD.

Global Acceleration

Locally Accelerated Conditional Gradients

References

Main ideas of LaCG:

 At each iteration perform a CG variant step and a μAGD step over C_{t+1} and select x_{t+1} = argmin{x_{t+1}^{CG}, x_{t+1}^{μAGD}}.

• At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

• At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

• At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

• At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

• At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

• At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

 μ AGD Step

• At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

 μ AGD Step

• At each iteration perform a CG variant step and a μ AGD step over C_{t+1} and select $x_{t+1} = \operatorname{argmin}\{x_{t+1}^{CG}, x_{t+1}^{\mu AGD}\}$.

 μ AGD Step

• Every *H* iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.

• Every *H* iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.

Restart

• Every *H* iterations restart: use S_t to update C_t if a vertex was added to S_t since the last update.

Restart

а

Global Acceleration

Locally Accelerated Conditional Gradients

References

Convergence rate of LaCG.

Theorem (Convergence rate of LaCG.)

Let f be L-smooth and μ -strongly convex and let r be the critical radius, for:

$$t = \min\left\{\mathcal{O}\left(\frac{L}{\mu}\left(\frac{D}{\delta}\right)^{2}\log\frac{1}{\epsilon}\right), K + \mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log\frac{1}{\epsilon}\right)\right\}$$
$$nd \ K = \frac{8L}{\mu}\left(\frac{D}{\delta}\right)^{2}\log\left(\frac{2(f(x_{0}) - f^{*})}{\mu r^{2}}\right), \ then \ f(x_{t}) - f(x^{*}) \le \epsilon$$

Global Acceleration

Locally Accelerated Conditional Gradients

References

Computational Results.

Despite the faster convergence rate after the burn-in phase, how does LaCG perform with respect to other projection-free algorithms?

Conditional Gradients	Global Acceleration	Locally Accelerated Conditional Gradients	References

Simplex in \mathbb{R}^{1500} with $L/\mu = 1000$.

Figure: Primal gap vs. iteration Figure: Primal gap vs. time When close enough to x* (after burn-in phase), there is a significant speedup in the convergence rate.

onditional Gradients	Locally Accelerated Conditional Gradients	References
	000000000000000000000000000000000000000	

Birkhoff polytope in $\mathbb{R}^{400\times400}$ with $L/\mu = 100$.

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

Structured Regression over MIPLIB Polytope (ran14x18-disj-8).

Figure: Primal gap vs. iteration

Figure: Primal gap vs. time

Thank you for your attention.

Conditional Gradients	Global Acceleration	Locally Accelerated Conditional Gradients	References
References I			

- Boris Teodorovich Polyak. "Minimization methods in the presence of constraints". In: *Itogi Nauki i Tekhniki. Seriya*" Matematicheskii Analiz" 12 (1974), pp. 147–197.
- [2] Marguerite Frank and Philip Wolfe. "An algorithm for quadratic programming". In: Naval research logistics quarterly 3.1-2 (1956), pp. 95–110.
- [3] Simon Lacoste-Julien and Martin Jaggi. "On the Global Linear Convergence of Frank-Wolfe Optimization Variants". In: Advances in Neural Information Processing Systems 28. 2015, pp. 496–504.
- [4] Arkadii Semenovich Nemirovsky and David Borisovich Yudin.
 "Problem complexity and method efficiency in optimization". In: Wiley-Interscience Series in Discrete Mathematics 15 (1983).
- [5] Y Nesterov. "A method of solving a convex programming problem with convergence rate $O(\frac{1}{k^2})$ ". In: Soviet Math. Dokl. Vol. 27. 1983.

Conditional Gradients	Global Acceleration	Locally Accelerated Conditional Gradients	References
References II			

[6] Jelena Diakonikolas, Alejandro Carderera, and Sebastian Pokutta. "Locally Accelerated Conditional Gradients". In: arXiv preprint arXiv:1906.07867 (2019).