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Goal is to solve:

min
x∈X

5 (x)

Where 5 (x) is a convex function and X is a compact convex set.
How can we tackle the problem?
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1. Projected Newton Method:

For C ≥ 0 and 0 < WC ≤ 1 do:

xC+1 = argmin
x∈X

5 (xC ) + 〈∇ 5 (xC ), x − xC〉 +
1

2WC
‖x − xC ‖∇2 5 (xC ) .

This is equivalent to:

xC+1 = argmin
x∈X




x − (
xC − WC [∇2 5 (xC )]−1∇ 5 (xC )

)


2
∇2 5 (xC )

.
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1. Projected Newton Method:

X
5 (x)

x:

5 (x:)+ < ∇ 5 (x:), x − x: > + 1
2W:
| |x − x: | |2∇2 5 (x: )

−∇ 5 (x:)

x:+1

Downside:

Computing ∇2 5 (xC ) can be very expensive

Need to solve a quadratic problem over X
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2. Projected Gradient Descent:

For C ≥ 0 and 0 < WC ≤ 1 do:

xC+1 = argmin
x∈X

5 (xC ) + 〈∇ 5 (xC ), x − xC〉 +
1

2WC
‖x − xC ‖2

This is equivalent to:

xC+1 = argmin
x∈X

‖x − (xC − WC∇ 5 (xC ))‖2 .
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3. Conditional Gradients (CG) [LP66]:

Also known as the Frank-Wolfe (FW) algorithm ([FW56]). For
C ≥ 0 do:

vC+1 = argmin
x∈X

5 (xC ) + 〈∇ 5 (xC ), x − xC〉 .

And for some 0 < WC ≤ 1 take:

xC+1 = xC + WC (vC+1 − xC )
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This leads to the ”The Poor Man’s Approach to Convex
Optimization and Duality” [Jag11]:

Algorithm 1 CG algorithm.

Input: G0 ∈ X, stepsizes WC ∈ (0, 1].

1: for C = 0 to ) do
2: vC = argminx∈X 〈∇ 5 (xC ), x〉
3: xC+1 = xC + WC (vC − xC )
4: end for

At each iterate we can immediately compute the Frank-Wolfe-gap
6(xC ):

6(xC )
def
= 〈∇ 5 (xC ), xC − vC〉 = max

v∈X
〈∇ 5 (xC ), xC − v〉



Conditional Gradients Applications in Machine Learning References

Frank-Wolfe gap.

The Frank-Wolfe gap is an upper bound on the primal gap, and
can therefore be used as a stopping criterion when running these
algorithms:

6(xC ) = max
v∈X
〈∇ 5 (xC ), xC − v〉

≥ 〈∇ 5 (xC ), xC − x∗〉
≥ 5 (xC ) − 5 (x∗).

Where the last inequality follows
from the convexity of 5 .

f(x)

xx∗xt v1

f(xt)

v0

f(xt)+ < ∇f(xt),x− xt >

f(x∗)
max
v∈X

< ∇f(xt),xt − v >
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Advantages of CG.

First-order. Dimensionality of modern problems makes computing
second-order information infeasible.

Projection-free. Projection into certain feasible regions is
computationally expensive: Birkhoff polytope and flow polytope
are a few examples.

Sparse solutions. Solution is a convex combination of (a typically
sparse set of) extreme points.

Stopping criterion. At each iteration the Frank-Wolfe gap gives
us an upper bound on the primal gap.
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Convergence rate for !-smooth and convex 5

Theorem (Primal gap convergence rate of CG/FW)

The CG/FW algorithm using WC = 2/(2 + C) converges at a rate of
5 (xC ) − 5 (x∗) = O(1/C) [FW56; DH78]. Moreover, the Frank-Wolfe
gap satisfies min

0≤C≤)
6(xC ) = O(1/C) for ) ≥ 1 [Jag13].

The aforementioned primal gap rate is optimal for the class of
algorithms that only add a single vertex at each iteration [Jag13;
Lan13].
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What about !-smooth and `-strongly convex 5 ?

In general: Sublinear convergence.

Example (CG Convergence.)

!-smooth and `-strongly convex 5 with G ∈ ℝ2, and G∗ in
boundary of X using line search.
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Linear convergence when X is a polytope is achieved by allowing
steps that decrease the weight of bad vertices [GH15]. This has
led to various CG variants:

Away-step Conditional Gradients (ACG)

x0

-0.30.
0

0.5

1.0
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x1

x2

x3

x∗

Figure: Away-step CG (ACG)

Allow steps in the direction of:

xC − argmax
u∈S

〈∇ 5 (xC ), u〉 ,

where S is the active set of xC .
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Pairwise-step Conditional Gradients (PCG)
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Figure: Pairwise-step CG

Move along:

argmin
v∈X

〈∇ 5 (xC ), v〉 − argmax
u∈S

〈∇ 5 (xC ), u〉 ,

where S is the active set of xC .
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Convergence rate for !-smooth `-strongly convex 5 .

Theorem (Convergence rate of ACG and PCG.)

If X is a polytope, then the ACG and PCG algorithms with line

search satisfy that 5 (xC ) − 5 (x∗) = O
(
1 − `

!

(
X
�

)2) : (C)
[LJ15] where

� and X are the diameter and pyramidal width of the polytope X
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Video Co-localization.

Objective
Given a set of videos, locate with bounding boxes an object that is
present in the frames. It can be used to generate data from
weakly-labelled videos.

(a) Frame C8−1 (b) Frame C8 (c) Frame C8+1



Conditional Gradients Applications in Machine Learning References

Formulation sketch

1 Generate a series of bounding boxes for each frame

2 Compute a temporal similarity metric between all the
bounding boxes in frames C8 and C8+1, for all 8

3 Build a directed graph using the bounding boxes as nodes.
For every bounding box at time C8, connect it with a weighted
edge to all the bounding boxes at time C8+1 where the weight
is given by the similarity metric.

4 Get rid of edges with similarity weight below a given threshold.

5 Construct a convex quadratic function that encodes the
temporal and spatial similarity of the bounding boxes.
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Video Co-localization.

Find the path between the first and last frame that maximizes this
quadratic:

A relaxation of the previous problem can be formulated as:

min
x∈X
〈x, &x〉 + 〈b, x〉 ,

where X is the convex hull of the vertices of the flow polytope, &
is a symmetric positive semi-definite matrix, and b is a vector.
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Matrix Completion.

Why use a CG/FW algorithm?
Solving an LP over the flow polytope is equivalent to solving a
shortest path problem.
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Matrix Completion.

Objective
Given a matrix . ∈ ℝ=×<, assume we only observe a subset of all
its entries, denoted by I ⊆ {(8, 9)‖1 ≤ 8 ≤ <, 1 ≤ 9 ≤ =}. Find a
low rank matrix - ∈ ℝ=×< that approximates . (useful in
recommendations systems). A convex surrogate of the previous
problem can be phrased

min
‖- ‖nuc≤g

1

‖I‖
∑
(8, 9) ∈I

(.8, 9 − -8, 9)2,

where ‖- ‖nuc denotes the nuclear norm of -, which is equal to the
sum of the singular values of -.
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Matrix Completion.

Why use a CG/FW algorithm?
Computing a projection onto the nuclear norm ball requires
computing a full SVD decomposition of the matrix -, whereas
solving a linear minimization problem over the nuclear norm ball
requires computing only the top left and right singular vectors!
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Thank you
for your attention.
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