Projection-Free First Order Optimization 2020 INFORMS Annual Meeting

Alejandro Carderera

Georgia Institute of Technology alejandro.carderera@gatech.edu

November 11th, 2020

H. Milton Stewart School of Industrial and Engineering Systems Goal is to solve:

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

Where $f(\mathbf{x})$ is a convex function and \mathcal{X} is a compact convex set. How can we tackle the problem?

1. Projected Newton Method:

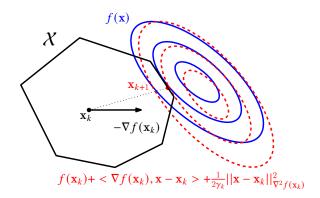
For $t \ge 0$ and $0 < \gamma_t \le 1$ do:

$$\mathbf{x}_{t+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}_t) + \left\langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \right\rangle + \frac{1}{2\gamma_t} \left\| \mathbf{x} - \mathbf{x}_t \right\|_{\nabla^2 f\left(\mathbf{x}_t\right)}.$$

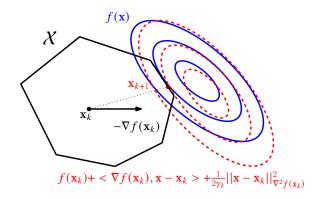
This is equivalent to:

$$\mathbf{x}_{t+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} \left\| \mathbf{x} - \left(\mathbf{x}_t - \gamma_t [\nabla^2 f(\mathbf{x}_t)]^{-1} \nabla f(\mathbf{x}_t) \right) \right\|_{\nabla^2 f(\mathbf{x}_t)}^2.$$

1. Projected Newton Method:



1. Projected Newton Method:



Downside:

- Computing $\nabla^2 f(\mathbf{x}_t)$ can be very expensive
- ullet Need to solve a quadratic problem over ${\mathcal X}$

2. Projected Gradient Descent:

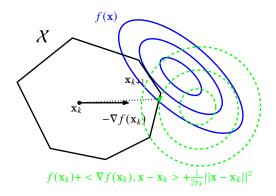
For $t \ge 0$ and $0 < \gamma_t \le 1$ do:

$$\mathbf{x}_{t+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}_t) + \left\langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \right\rangle + \frac{1}{2\gamma_t} \left\| \mathbf{x} - \mathbf{x}_t \right\|^2$$

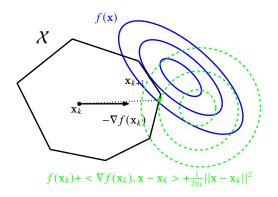
This is equivalent to:

$$\mathbf{x}_{t+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} - (\mathbf{x}_t - \gamma_t \nabla f(\mathbf{x}_t))\|^2.$$

2. Projected Gradient Descent:



2. Projected Gradient Descent:



Downside:

- Computing $\nabla^2 f(\mathbf{x}_t)$ can be very expensive
- ullet Need to solve a quadratic problem over ${\mathcal X}$

3. Conditional Gradients (CG) [LP66]:

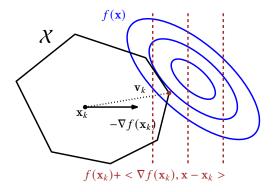
Also known as the Frank-Wolfe (FW) algorithm ([FW56]). For t > 0 do:

$$\mathbf{v}_{t+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle.$$

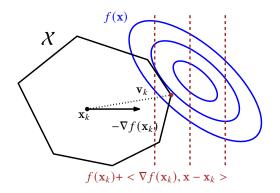
And for some $0 < \gamma_t \le 1$ take:

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \gamma_t \left(\mathbf{v}_{t+1} - \mathbf{x}_t \right)$$

3. Conditional Gradients (CG) [LP66]:



3. Conditional Gradients (CG) [LP66]:



Downside:

- Computing $\nabla^2 f(\mathbf{x}_t)$ can be very expensive
- ullet Need to solve a quadratic problem over ${\mathcal X}$

This leads to the "The Poor Man's Approach to Convex Optimization and Duality" [Jag11]:

Algorithm 1 CG algorithm.

Input: $x_0 \in \mathcal{X}$, stepsizes $\gamma_t \in (0, 1]$.

- 1: **for** t = 0 to T **do**
- 2: $\mathbf{v}_t = \operatorname{argmin}_{\mathbf{x} \in \mathcal{X}} \langle \nabla f(\mathbf{x}_t), \mathbf{x} \rangle$
- 3: $\mathbf{x}_{t+1} = \mathbf{x}_t + \gamma_t (\mathbf{v}_t \mathbf{x}_t)$
- 4: end for

At each iterate we can immediately compute the *Frank-Wolfe-gap* $g(\mathbf{x}_t)$:

$$g(\mathbf{x}_t) \stackrel{\text{def}}{=} \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{v}_t \rangle = \max_{\mathbf{v} \in X} \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{v} \rangle$$

Frank-Wolfe gap.

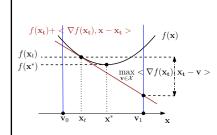
The Frank-Wolfe gap is an upper bound on the primal gap, and can therefore be used as a stopping criterion when running these algorithms:

$$g(\mathbf{x}_t) = \max_{\mathbf{v} \in \mathcal{X}} \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{v} \rangle$$

$$\geq \langle \nabla f(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle$$

$$\geq f(\mathbf{x}_t) - f(\mathbf{x}^*).$$

Where the last inequality follows from the convexity of f.



First-order. Dimensionality of modern problems makes computing second-order information infeasible.

First-order. Dimensionality of modern problems makes computing second-order information infeasible.

Projection-free. Projection into certain feasible regions is computationally expensive: Birkhoff polytope and flow polytope are a few examples.

First-order. Dimensionality of modern problems makes computing second-order information infeasible.

Projection-free. Projection into certain feasible regions is computationally expensive: Birkhoff polytope and flow polytope are a few examples.

Sparse solutions. Solution is a convex combination of (a typically sparse set of) extreme points.

First-order. Dimensionality of modern problems makes computing second-order information infeasible.

Projection-free. Projection into certain feasible regions is computationally expensive: Birkhoff polytope and flow polytope are a few examples.

Sparse solutions. Solution is a convex combination of (a typically sparse set of) extreme points.

Stopping criterion. At each iteration the Frank-Wolfe gap gives us an upper bound on the primal gap.

Convergence rate for L-smooth and convex f

Theorem (Primal gap convergence rate of CG/FW)

The CG/FW algorithm using $\gamma_t = 2/(2+t)$ converges at a rate of $f(\mathbf{x}_t) - f(\mathbf{x}^*) = O(1/t)$ [FW56; DH78]. Moreover, the Frank-Wolfe gap satisfies $\min_{0 \le t \le T} g(\mathbf{x}_t) = O(1/t)$ for $T \ge 1$ [Jag13].

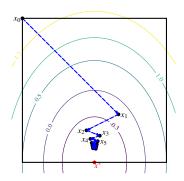
The aforementioned primal gap rate is optimal for the class of algorithms that only add a single vertex at each iteration [Jag13; Lan13].

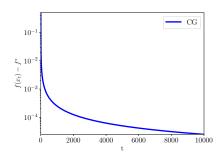
What about L-smooth and μ -strongly convex f?

In general: Sublinear convergence.

Example (CG Convergence.)

L-smooth and μ -strongly convex f with $x \in \mathbb{R}^2$, and x^* in boundary of X using line search.





Linear convergence when \mathcal{X} is a polytope is achieved by allowing steps that decrease the weight of bad vertices [GH15]. This has led to various CG variants:

Linear convergence when X is a polytope is achieved by allowing steps that decrease the weight of bad vertices [GH15]. This has led to various CG variants:

Away-step Conditional Gradients (ACG)

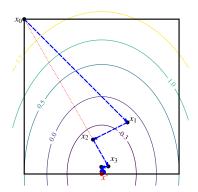


Figure: Away-step CG (ACG)

Allow steps in the direction of:

$$\mathbf{x}_t - \operatorname*{argmax}_{\mathbf{u} \in \mathcal{S}} \langle \nabla f(\mathbf{x}_t), \mathbf{u} \rangle,$$

where S is the active set of \mathbf{x}_t .

Pairwise-step Conditional Gradients (PCG)

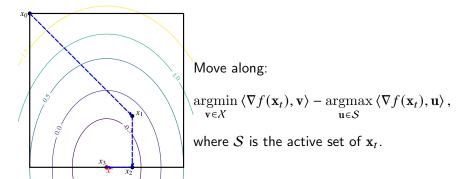


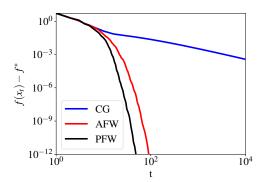
Figure: Pairwise-step CG

Conditional Gradients

Convergence rate for L-smooth μ -strongly convex f.

Theorem (Convergence rate of ACG and PCG.)

If X is a polytope, then the ACG and PCG algorithms with line search satisfy that $f(\mathbf{x}_t) - f(\mathbf{x}^*) = O\left(1 - \frac{\mu}{L}\left(\frac{\delta}{D}\right)^2\right)^{k(t)}$ [LJ15] where D and δ are the diameter and pyramidal width of the polytope X



Video Co-localization.

Objective

Given a set of videos, locate with bounding boxes an object that is present in the frames. It can be used to generate data from weakly-labelled videos.

(a) Frame t_{i-1}

(b) Frame t_i

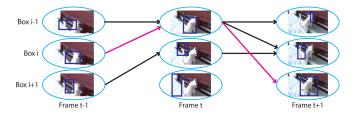
(c) Frame t_{i+1}

Formulation sketch

- Generate a series of bounding boxes for each frame
- ② Compute a temporal similarity metric between all the bounding boxes in frames t_i and t_{i+1} , for all i
- 3 Build a directed graph using the bounding boxes as nodes. For every bounding box at time t_i , connect it with a weighted edge to all the bounding boxes at time t_{i+1} where the weight is given by the similarity metric.
- Get rid of edges with similarity weight below a given threshold.
- Construct a convex quadratic function that encodes the *temporal* and *spatial* similarity of the bounding boxes.

Video Co-localization.

Find the path between the first and last frame that maximizes this quadratic:



A relaxation of the previous problem can be formulated as:

$$\min_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{x}, Q\mathbf{x} \rangle + \langle \mathbf{b}, \mathbf{x} \rangle,$$

where X is the convex hull of the vertices of the flow polytope, Q is a symmetric positive semi-definite matrix, and \mathbf{b} is a vector.

Matrix Completion.

Why use a CG/FW algorithm?

Solving an LP over the flow polytope is equivalent to solving a shortest path problem.

Matrix Completion.

Objective

Given a matrix $Y \in \mathbb{R}^{n \times m}$, assume we only observe a subset of all its entries, denoted by $I \subseteq \{(i,j) | 1 \le i \le m, 1 \le j \le n\}$. Find a low rank matrix $X \in \mathbb{R}^{n \times m}$ that approximates Y (useful in recommendations systems). A convex surrogate of the previous problem can be phrased

$$\min_{\|X\|_{\text{nuc}} \le \tau} \frac{1}{\|I\|} \sum_{(i,j) \in I} (Y_{i,j} - X_{i,j})^2,$$

where $||X||_{\text{nuc}}$ denotes the nuclear norm of X, which is equal to the sum of the singular values of X.

Matrix Completion.

Why use a CG/FW algorithm?

Computing a projection onto the nuclear norm ball requires computing a full SVD decomposition of the matrix X, whereas solving a linear minimization problem over the nuclear norm ball requires computing only the top left and right singular vectors!

Thank you for your attention.

References

References I

- [FW56] Marguerite Frank and Philip Wolfe. "An algorithm for quadratic programming". In: *Naval research logistics quarterly* 3.1-2 (1956), pp. 95–110.
- [LP66] E. S. Levitin and B. T. Polyak. "Constrained minimization methods". In: USSR Computational Mathematics and Mathematical Physics 6.5 (1966), pp. 1–50.
- [Jag11] Martin Jaggi. "Sparse convex optimization methods for machine learning". PhD thesis. ETH Zurich, 2011.
- [DH78] Joseph C Dunn and S Harshbarger. "Conditional gradient algorithms with open loop step size rules". In: Journal of Mathematical Analysis and Applications 62.2 (1978), pp. 432–444.
- [Jag13] Martin Jaggi. "Revisiting Frank-Wolfe: Projection-free sparse convex optimization". In: *Proceedings of the 30th international conference on machine learning*. CONF. 2013, pp. 427–435.

References II

- [Lan13] Guanghui Lan. "The complexity of large-scale convex programming under a linear optimization oracle". In: arXiv preprint arXiv:1309.5550 (2013).
- [GH15] Dan Garber and Elad Hazan. "Faster rates for the frank-wolfe method over strongly-convex sets". In: 32nd International Conference on Machine Learning, ICML 2015. 2015.
- [LJ15] Simon Lacoste-Julien and Martin Jaggi. "On the Global Linear Convergence of Frank-Wolfe Optimization Variants". In: Advances in Neural Information Processing Systems 28. 2015, pp. 496–504.