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Goal is to solve:

min f(x)

Where f(x) is a convex function and X is a compact convex set.
How can we tackle the problem?
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1. Projected Newton Method:

Fort>0and 0 <y, <1 do:

. 1
X;41 = argmin f(x,) +(Vf(x/),x = x;) + oy, llx - Xt||v2f (x¢) *
xeX Yt

This is equivalent to:
2

X;+1 = argmin “x - (XI ~Y: [V2f(xz)]_1Vf(Xt)) V2f (%)

xeX
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1. Projected Newton Method:

— L x = 2
FOO+ < VA (0% = x> 45l = xel2,
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1. Projected Newton Method:

— L x = 2
FOO+ < VA (0% = x> 45l = xel2,

Downside:
e Computing V2 f(x;) can be very expensive

@ Need to solve a quadratic problem over X
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2. Projected Gradient Descent:

Fort>0and 0 <y, <1 do:

. 1
Xo41 = argmin £ (x,) + (V.f (%), % = X¢) + o [|lx = x|
xeX Vi

This is equivalent to:

X;41 = argmin |x — (x; — %Vf(xt))”2 .
xeX
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2. Projected Gradient Descent:
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2. Projected Gradient Descent:

Downside:

2

@ Need to solve a quadratic problem over X
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3. Conditional Gradients (CG) [LP66]:

Also known as the Frank-Wolfe (FW) algorithm ([FW56]). For
t > 0 do:

Vi1 = argmin f(x,) +(Vf(x,), x — %) .
xeX

And for some 0 < y; < 1 take:

X1 = X + Yy (Vip1 — %)
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3. Conditional Gradients (CG) [LP66]:

Jx)

Fx)+ < VI(x),x —x; >
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3. Conditional Gradients (CG) [LP66]:

Jx)

Fx)+ < VI(x),x —x; >

Downside:

° 2

o Need-toselvea—quadratic problemoverX
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This leads to the " The Poor Man’s Approach to Convex
Optimization and Duality” [Jagll]:

Algorithm 1 CG algorithm.
Input: xo € X, stepsizes vy, € (0,1].

1: fort=0to T do

2 v, = argmingey (V£ (), %)
30 X1 =X+ Y (Vi = Xy)

4: end for

At each iterate we can immediately compute the Frank-Wolfe-gap
8(xs):

§(xe) = (Vf (x0). % = Vi) = max (Vf (x,), % = v)
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Frank-Wolfe gap.

The Frank-Wolfe gap is an upper bound on the primal gap, and
can therefore be used as a stopping criterion when running these
algorithms:

g(x) = I‘Elea)?f (Vf(x:), % —v)

2 (Vf(x:), % —x7)
> f(x) - f(x).

Where the last inequality follows
from the convexity of f.
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Advantages of CG.

First-order. Dimensionality of modern problems makes computing
second-order information infeasible.
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Advantages of CG.

First-order. Dimensionality of modern problems makes computing
second-order information infeasible.

Projection-free. Projection into certain feasible regions is
computationally expensive: Birkhoff polytope and flow polytope
are a few examples.

Sparse solutions. Solution is a convex combination of (a typically
sparse set of ) extreme points.

Stopping criterion. At each iteration the Frank-Wolfe gap gives
us an upper bound on the primal gap.
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Convergence rate for L-smooth and convex f

Theorem (Primal gap convergence rate of CG/FW)

The CG/FW algorithm using y; = 2/(2 +1t) converges at a rate of
f(x) - f(x*) =0(1/r) [FW56; DH78]. Moreover, the Frank-Wolfe
gap satisfies 0r<ni<nT g(x;)=0(1/t) forT > 1 [Jagl3].

<r<

The aforementioned primal gap rate is optimal for the class of
algorithms that only add a single vertex at each iteration [Jagl3;
Lan13].
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What about L-smooth and u-strongly convex f7?

In general: Sublinear convergence.

Example (CG Convergence.)

L-smooth and p-strongly convex f with x € R?, and x* in
boundary of X using line search.

0 2000 4000 6000 8000 10000
t
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Linear convergence when X is a polytope is achieved by allowing
steps that decrease the weight of bad vertices [GH15]. This has
led to various CG variants:
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Linear convergence when X is a polytope is achieved by allowing
steps that decrease the weight of bad vertices [GH15]. This has
led to various CG variants:

Away-step Conditional Gradients (ACG)

/v \ Allow steps in the direction of:

x, —argmax (V f(x;),u),

ueS

where S is the active set of x,.

Lo

Figure: Away-step CG (ACG)
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Pairwise-step Conditional Gradients (PCG)

X0

/ ) \ Move along:

\argmin (Vf(x;),v) —argmax (Vf(x;),u),
' veX ueS

'.
|
i
2T

where S is the active set of x;.

Y
X3
‘ v

l

Figure: Pairwise-step CG
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Convergence rate for L-smooth u-strongly convex f.

Theorem (Convergence rate of ACG and PCG.)

If X is a polytope, then the ACG and PCG algorithms with line
search satisfy that f(x;) — f(x*) = O (1 -£ (%)Q)k(t) [LJ15] where
D and ¢ are the diameter and pyramidal width of the polytope X
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Video Co-localization.

Objective

Given a set of videos, locate with bounding boxes an object that is
present in the frames. It can be used to generate data from
weakly-labelled videos.

(a) Frame t;_; (b) Frame ¢; (c) Frame ;41
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Formulation sketch
© Generate a series of bounding boxes for each frame

@ Compute a temporal similarity metric between all the
bounding boxes in frames ¢; and t;41, for all i

© Build a directed graph using the bounding boxes as nodes.
For every bounding box at time ¢;, connect it with a weighted
edge to all the bounding boxes at time #;,; where the weight
is given by the similarity metric.

@ Get rid of edges with similarity weight below a given threshold.

© Construct a convex quadratic function that encodes the
temporal and spatial similarity of the bounding boxes.
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Video Co-localization.

Find the path between the first and last frame that maximizes this
quadratic:

Frame t-1 Framet Frame t+1

A relaxation of the previous problem can be formulated as:
min (x, 0x) + (b, x),
xeX

where X is the convex hull of the vertices of the flow polytope, Q
is a symmetric positive semi-definite matrix, and b is a vector.
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Matrix Completion.

Why use a CG/FW algorithm?
Solving an LP over the flow polytope is equivalent to solving a
shortest path problem.
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Matrix Completion.

Objective

Given a matrix Y € R™™ assume we only observe a subset of all
its entries, denoted by 7 C {(i,j)||I1 <i <m,1 <j <n}. Find a
low rank matrix X € R™™ that approximates Y (useful in
recommendations systems). A convex surrogate of the previous
problem can be phrased

1

min o Z (Yij— X))
IXlhwe =7 1211 452

where || X||,uc denotes the nuclear norm of X, which is equal to the
sum of the singular values of X.
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Matrix Completion.

Why use a CG/FW algorithm?

Computing a projection onto the nuclear norm ball requires
computing a full SVD decomposition of the matrix X, whereas
solving a linear minimization problem over the nuclear norm ball
requires computing only the top left and right singular vectors!



Thank you
for your attention.
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